The October and November 2005 columns discussed how the ionosphere forms. This month’s column will give a brief overview of how the ionosphere is measured. As this will necessarily be brief, I will also point to references that give more details if so desired.

The F Region

The F region of the ionosphere is best measured with an ionosonde, which is essentially an HF radar operating in the pulse mode with an antenna that radiates most of its energy straight up (this is also referred to as a vertical sounder). It measures the time from when the pulse leaves the transmitter to the time it returns back to the receiver. This is done as a function of frequency, generally from 1MHz or so all the way up to 20MHz if appropriate.

Knowing the up-and-back time of the pulse allows one to calculate the height the pulse reached before being turned around and sent back to Earth – which is simply the roundtrip time divided by two multiplied by the speed of light. This height is known as the virtual height as it assumes the pulse travels at the speed of light for the entire trip. In reality, as the index of refraction in the ionosphere decreases from 1 and approaches 0 as the pulse progresses upward into an ever-increasing electron density, the pulse slows down and refracts (bends) back to Earth. Thus the pulse doesn’t really reach the virtual height, and the height it really reaches is called the true height. The true height of the pulse is always lower than the virtual height. Figure 1 shows this concept.

![Figure 1 – Concept of Virtual and True Height](image-url)
the horizontal axis. This plot is called an ionogram. Figure 2 shows a daytime ionogram under quiet magnetic field conditions from the ionosonde at Millstone Hill, MA.

![Figure 2 – A Sample Ionogram](image)

This ionogram shows echoes from the E region, the F1 region, and the F2 region. Following the trace from its beginning around 1.6MHz, we see that the virtual height steadily increases as frequency increases. Just before 3MHz the trace rises steeply – this is the E region critical frequency (annotated as foE), indicating that the E region electron density at this frequency is not dense enough to turn the pulse back to Earth. Similarly, another steep rise in virtual height is seen around 5.5MHz – this is the F2 region critical frequency (annotated foF2). Note the slight hump in the trace around 4MHz that’s annotated foF1 – this is the F1 critical frequency (there is no steep rise in virtual height as seen with foE and foF2 because the F1 region does not have an electron density peak as do the E and F2 regions – the F1 region is more of an inflection point in the electron density).

Note that two traces show up beginning just above 4MHz. The two traces are the ordinary wave (the red trace) and the extraordinary wave (the green trace) as discussed in the May 2007 column (an up-going wave splits into an ordinary wave and an extraordinary wave upon entering the ionosphere). The difference in refraction between the ordinary wave and the extraordinary wave is quite obvious. As predicted by theory, the extraordinary wave F2 region critical frequency (6.20MHz as noted in the data on the left of the ionogram) is higher than the ordinary wave F2 region critical frequency (5.49MHz) by about one-half the electron gyro-frequency (the electron gyro-frequency is around 1.5MHz over the Millstone Hill ionosonde).

Also note the trace annotated ‘N(h)-profile’. This is the electron density as deduced from the ordinary wave parameters (along with making some important assumptions with respect to the shape of the profile). The profile is shown only up to the foF2 critical frequency in this ionogram, as the wave goes through the ionosphere above that
frequency – never to be returned. So the ionosonde can’t “see” above the maximum F2 region electron density. But data from satellites (also known as topside sounders) indicates that the electron density decays exponentially above this maximum. This exponential decay is what you’ll see when you look at the electron density profile in real-time ionosonde data (for example, at digisonde.haystack.edu/latestFrames.htm).

With ionosondes running worldwide and running for many years, the characteristics of the F region versus time of day, month, and solar phase allow a data-based model of the F region to be developed. Translating this vertical data to oblique paths is relatively easy, and this then forms the basis for our propagation prediction programs. The concept of virtual height and true height also applies to oblique paths.

One comment on ionosonde data is in order. Getting pertinent data from ionograms can be very tasking. The ionogram in Figure 2 is pretty benign. If you’re interested in more information on interpreting ionograms, download UAG-23A: URSI Handbook of Ionogram Interpretation and Reduction (second edition) from the Australian IPS website at www.ips.gov.au/IPSHosted/INAG/uag_23a/uag_23a.html. This is a 10Meg file, and it gives you a 137 page document. Yes, 137 pages – as I said, interpreting ionograms can be very tasking with geomagnetic field activity thrown in along with other phenomenon!

The E Region

As can be seen in Figure 2, data on the daytime E region also comes out of the ionogram. But ionosondes are not as important for our understanding of the quiet daytime E region as they are for the F region. The reason for this is the E region is under direct solar control. In other words, the daytime E region critical frequency under quiet geomagnetic field conditions can be modeled with good accuracy simply by knowing the solar zenith angle (the angle measured from straight up to where the Sun is) and the smoothed sunspot number (see equation 5.1 in Ionospheric Radio by Kenneth Davies for this relationship). On the other hand, the F region is not under direct solar control – yes, it is formed by solar radiation, but it is influenced by a slower recombination rate and winds at the higher F2 region altitudes, and results in the F2 region maximum electron density peaking later in the afternoon local time as opposed to local noon for the E region.

But there is a problem at night in measuring the E region – the E region critical frequency is usually below the low-frequency limit of an ionosonde. The low-frequency limit is determined by output power, antenna gain, and system receive sensitivity of the ionosonde (not unlike what limits us on our lower bands). So how do we know what the E region is doing at night? This is where real radars at higher frequencies come into play. They can be used to determine the electron density of the nighttime E region (the nighttime E region critical frequency is around 0.5MHz, and varies a couple tenths of a MHz over a solar cycle). They can confirm that there is indeed a nighttime valley in the electron density above the E region peak – the valley that appears to be an important player in ducting on 160m at night. And they can also help us understand the E region under disturbed geomagnetic field conditions.
The D Region

Measuring the D region, whether at night or in the daytime, poses the toughest problem for scientists. Again it’s due to an ionosonde not being able to detect a return signal at low frequencies. Thus radars again play an important role in measuring the D region, as do rocket flights. As one would expect from these limited availability techniques, our understanding of the D region and its variability leaves a lot to be desired. Not having a good understanding of the D region (at least not as good as our understanding of the E and F regions) has the biggest impact to propagation on the lower frequencies – where absorption dominates in determining propagation.

There is another interesting technique used to deduce D region electron densities. The low frequency energy in an electromagnetic wave generated by a lightning discharge propagates in the Earth-ionosphere waveguide – that is, between ground and the D region. A receiving station can record the spectral characteristics of this propagating energy, and this technique then varies a model of the D region electron density to match its predicted spectral characteristics to the measured spectral characteristics.

Summary

Most of our understanding of the F region comes from data taken by ionosondes. Computer models, radars, rockets, and the spectral characteristics of lightning propagation add to this understanding for the E region and the D region. For a more detailed discussion of measuring the ionosphere, I recommend the book Radio Techniques for Probing the Terrestrial Ionosphere by R. D. Hunsucker (Springer-Verlag, 1991). By the way, R. D. Hunsucker is one of us – he’s Bob AB7VP.