Pythagorean Progressions (a^2+b^2+c^2...+m^2=n^2)
Pythagorean triples provide integer solutions to the equation:
a^2+b^2=c^2
Consider the equations:
a^2+b^2+c^2...+m^2=n^2
Propositions:
1) all such equations have multiple, nonrepetitive (i.e., a<>b<>c...<>m) solutions such that a,b,c...m,n
are integer
Perhaps this is obvious enough. Consider rewriting the equations such that:
a^2+b^2+c^2... = n^2-m^2
Then, it can be noted that the sum on the left hand side of the equation (a^2, b^2, c^2,...)
can formulated such that it produces an odd number (e.g., if a is odd and b & c are even, etc.).
The right hand side, n^2-m^2 can be formulated such that n=m+1. Since the difference of
consecutive squares forms consecutive odd numbers, e.g.,:
1^2-0^2=1
2^2-1^2=3
3^2-2^2=5
4^2-3^2=7
etc.
it should be hopefully obvious that there will always be a rather large number of integer solutions
for a, b, c, m, n.
Perhaps of more interest is the possibility that series can be formed that would appear to also
satisfy this proposition. The tables below demonstrate several series that can satisfy the
above proposition (for n=5 or greater). Beginning with row 2 in table 1 and row 4 in table 2,
the m-1 term (shaded in light yellow) is formed by adding the
previous two terms (e.g., for row 2, the m-1 term is 2+4=6; for row 3, 4+6=10, for row 4, 6+10=16, etc.).
Term m (shaded in light red), for table 1 equals (((m*(m+(term m-1))-4)/2 (e.g., for row 2 (6*(6+4))-4)/2=28)
(special thanks to David M. Einstein for demonstrating this). Term m for table 2 equals
(((m*((m+(term m-1))+4)/2 (e.g., for row 4 (24*(24+14))+4)/2=458). The actual ratio of term m's from
one row to the next is shaded in light green. Noting that the term m's are related to Fibonacci numbers
(again, thanks to David for pointing this out), it is perhaps not surprising to note that this ratio approaches
the square of the Golden Ratio (i.e., 2.618034). More examples of this type can be found in
Pythagorean / Fibonacci Progressions
( http://mysite.verizon.net/reriker/madpythag2.html ).
TABLE 1
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
1 |
2 |
4 |
10 |
11 |
2 |
1 |
2 |
4 |
6 |
28 |
29 | | |
2.8 |
3 |
1 |
2 |
4 |
6 |
10 |
78 |
79 | | |
2.78571428571429 |
4 |
1 |
2 |
4 |
6 |
10 |
16 |
206 |
207 | | |
2.64102564102564 |
5 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
544 |
545 | | |
2.64077669902913 |
6 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
1426 |
1427 | | |
2.62132352941176 |
7 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
3738 |
3739 | | |
2.62131837307153 |
8 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
9788 |
9789 | | |
2.61851257356875 |
9 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
25630 |
25631 | | |
2.61851246424193 |
10 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
67102 |
67103 | | |
2.61810378462739 |
11 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
175680 |
175681 | | |
2.61810378230157 |
12 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
459938 |
459939 | | |
2.6180441712204 |
13 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1204138 |
1204139 | | |
2.6180441711709 |
14 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3152476 |
3152477 | | |
2.61803547433932 |
15 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
8253294 |
8253295 | | |
2.61803547433827 |
16 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
21607406 |
21607407 | | |
2.61803420549419 |
17 |
1 |
2 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
56568926 |
56568927 | | |
2.61803411293332 |
TABLE 2
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
2 |
4 |
5 |
22 |
23 |
2 |
2 |
4 |
5 |
10 |
72 |
73 | | |
3.27272727272727 |
3 |
2 |
4 |
5 |
10 |
14 |
170 |
171 | | |
2.36111111111111 |
4 |
2 |
4 |
5 |
10 |
14 |
24 |
458 |
459 | | |
2.69411764705882 |
5 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
1180 |
1181 | | |
2.5764192139738 |
6 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
3102 |
3103 | | |
2.62881355932203 |
7 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
8102 |
8103 | | |
2.61186331399097 |
8 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
21224 |
21225 | | |
2.61960009874105 |
9 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
55546 |
55547 | | |
2.6171315491896 |
10 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
145434 |
145435 | | |
2.61826234112267 |
11 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
380732 |
380733 | | |
2.61790227869687 |
12 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
996782 |
996783 | | |
2.61806730193417 |
13 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
1796 |
2609590 |
2609591 | | |
2.6180147715348 |
14 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
1796 |
2906 |
6832008 |
6832009 | | |
2.6180388490146 |
15 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
1796 |
2906 |
4702 |
17886410 |
17886411 | | |
2.61803118497519 |
16 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
1796 |
2906 |
4702 |
7608 |
46827242 |
46827243 | | |
2.61803469785161 |
17 |
2 |
4 |
5 |
10 |
14 |
24 |
38 |
62 |
100 |
162 |
262 |
424 |
686 |
1110 |
1796 |
2906 |
4702 |
7608 |
12310 |
122595292 |
122595293 | | |
2.61803357968424 |
Another example of a series is shown in the tables below:
TABLE 3
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
2 |
6 |
8 |
25 |
27 |
2 |
2 |
6 |
8 |
12 |
61 |
63 | | |
2.44 |
3 |
2 |
6 |
8 |
12 |
16 |
125 |
127 | | |
2.04918032786885 |
4 |
2 |
6 |
8 |
12 |
16 |
20 |
225 |
227 | | |
1.8 |
5 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
369 |
371 | | |
1.64 |
6 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
565 |
567 | | |
1.53116531165312 |
7 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
821 |
823 | | |
1.45309734513274 |
8 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
1145 |
1147 | | |
1.39464068209501 |
9 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
1545 |
1547 | | |
1.34934497816594 |
10 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
2029 |
2031 | | |
1.31326860841424 |
11 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
2605 |
2607 | | |
1.2838836865451 |
12 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
3281 |
3283 | | |
1.2595009596929 |
13 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
4065 |
4067 | | |
1.23895153916489 |
14 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
4965 |
4967 | | |
1.22140221402214 |
15 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
5989 |
5991 | | |
1.20624370594159 |
16 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
68 |
7145 |
7147 | | |
1.19302053765236 |
17 |
2 |
6 |
8 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
68 |
72 |
8441 |
8443 | | |
1.1813855843247 |
TABLE 4
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
6 |
10 |
12 |
69 |
71 |
2 |
6 |
10 |
12 |
16 |
133 |
135 | | |
1.92753623188406 |
3 |
6 |
10 |
12 |
16 |
20 |
233 |
235 | | |
1.75187969924812 |
4 |
6 |
10 |
12 |
16 |
20 |
24 |
377 |
379 | | |
1.61802575107296 |
5 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
573 |
575 | | |
1.51989389920424 |
6 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
829 |
831 | | |
1.44677137870855 |
7 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
1153 |
1155 | | |
1.39083232810615 |
8 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
1553 |
1555 | | |
1.34692107545533 |
9 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
2037 |
2039 | | |
1.31165486155827 |
10 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
2613 |
2615 | | |
1.28276877761414 |
11 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
3289 |
3291 | | |
1.25870646766169 |
12 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
4073 |
4075 | | |
1.23837032532685 |
13 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
4973 |
4975 | | |
1.22096734593666 |
14 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
5997 |
5999 | | |
1.20591192439172 |
15 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
68 |
7153 |
7155 | | |
1.19276304819076 |
16 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
68 |
72 |
8449 |
8451 | | |
1.18118272053684 |
17 |
6 |
10 |
12 |
16 |
20 |
24 |
28 |
32 |
36 |
40 |
44 |
48 |
52 |
56 |
60 |
64 |
68 |
72 |
76 |
9893 |
9895 | | |
1.17090779973961 |
2) all squares of odd integers greater than 3 may be formed by the sum of nonrepetitive integer squares
3) more speculative, all squares of odd integers greater than 3 may be formed by 5 or less nonrepetitive
integer squares
Obviously, not offering a whole lot of proof of the above, just some beginning examples:
TABLE 5
a^2+b^2=c^2 | | | | | | | |
a |
b |
c |
| | | | | | | |
3 |
4 |
5 |
| | | | | | | |
5 |
12 |
13 |
| | | | | | | |
8 |
15 |
17 |
| | | | | | | |
7 |
24 |
25 |
| | | | | | | |
9 |
40 |
41 |
| | | | | | | |
11 |
60 |
61 |
| | | | | | | |
13 |
84 |
85 |
| | | | | | | |
15 |
112 |
113 |
| | | | | | | |
17 |
144 |
145 |
| | | | | | | |
19 |
180 |
181 |
a^2+b^2+c^2=d^2 | | | | | | |
a |
b |
c |
d |
| | | | | | |
2 |
3 |
6 |
7 |
| | | | | | |
1 |
4 |
8 |
9 |
| | | | | | |
2 |
5 |
14 |
15 |
| | | | | | |
1 |
6 |
18 |
19 |
| | | | | | |
4 |
5 |
20 |
21 |
| | | | | | |
2 |
7 |
26 |
27 |
| | | | | | |
5 |
6 |
30 |
31 |
| | | | | | |
4 |
7 |
32 |
33 |
| | | | | | |
3 |
8 |
36 |
37 |
| | | | | | |
2 |
9 |
42 |
43 |
| | | | | | |
5 |
8 |
44 |
45 |
| | | | | | |
4 |
9 |
48 |
49 |
| | | | | | |
1 |
10 |
50 |
51 |
| | | | | | |
3 |
10 |
54 |
55 |
| | | | | | |
2 |
11 |
62 |
63 |
| | | | | | |
7 |
10 |
74 |
75 |
| | | | | | |
9 |
10 |
90 |
91 |
| | | | | | |
3 |
14 |
102 |
103 |
| | | | | | |
10 |
11 |
110 |
111 |
| | | | | | |
2 |
15 |
114 |
115 |
| | | | | | |
8 |
13 |
116 |
117 |
| | | | | | |
4 |
15 |
120 |
121 |
| | | | | | |
1 |
16 |
128 |
129 |
| | | | | | |
3 |
16 |
132 |
133 |
a^2+b^2+c^2+d^2=e^2 | | | | | |
a |
b |
c |
d |
e |
| | | | | |
1 |
2 |
4 |
10 |
11 |
| | | | | |
2 |
4 |
5 |
22 |
23 |
| | | | | |
2 |
4 |
7 |
34 |
35 |
| | | | | |
2 |
3 |
8 |
38 |
39 |
| | | | | |
2 |
5 |
8 |
46 |
47 |
| | | | | |
1 |
2 |
10 |
52 |
53 |
| | | | | |
2 |
3 |
10 |
56 |
57 |
| | | | | |
1 |
4 |
10 |
58 |
59 |
| | | | | |
2 |
5 |
10 |
64 |
65 |
| | | | | |
1 |
6 |
10 |
68 |
69 |
| | | | | |
4 |
5 |
10 |
70 |
71 |
| | | | | |
2 |
7 |
10 |
76 |
77 |
| | | | | |
2 |
3 |
12 |
78 |
79 |
| | | | | |
5 |
6 |
10 |
80 |
81 |
| | | | | |
4 |
7 |
10 |
82 |
83 |
| | | | | |
3 |
8 |
10 |
86 |
87 |
| | | | | |
2 |
9 |
10 |
92 |
93 |
| | | | | |
5 |
8 |
10 |
94 |
95 |
| | | | | |
4 |
9 |
10 |
98 |
99 |
| | | | | |
1 |
2 |
14 |
100 |
101 |
| | | | | |
2 |
3 |
14 |
104 |
105 |
| | | | | |
1 |
4 |
14 |
106 |
107 |
| | | | | |
4 |
5 |
14 |
118 |
119 |
| | | | | |
2 |
4 |
15 |
122 |
123 |
| | | | | |
2 |
7 |
14 |
124 |
125 |
| | | | | |
3 |
10 |
12 |
126 |
127 |
| | | | | |
1 |
2 |
16 |
130 |
131 |
| | | | | |
2 |
3 |
16 |
134 |
135 |
| | | | | |
2 |
3 |
20 |
206 |
207 |
a^2+b^2+c^2+d^2+e^2=f^2 | | | | |
a |
b |
c |
d |
e |
f |
| | | | |
1 |
2 |
4 |
6 |
28 |
29 |
| | | | |
2 |
4 |
7 |
8 |
66 |
67 |
| | | | |
2 |
4 |
5 |
10 |
72 |
73 |
| | | | |
2 |
3 |
8 |
10 |
88 |
89 |
| | | | |
2 |
5 |
8 |
10 |
96 |
97 |
| | | | |
1 |
2 |
4 |
14 |
108 |
109 |