Pythagorean / Fibonacci Progressions
Pythagorean triples provide integer solutions to the equation:
a^2+b^2=c^2
Consider the equations:
a^2+b^2+c^2...+m^2=n^2
It is easily possible to formulate many series that provide integer solutions for these progressions,
the simplest of which are shown below:
Consider a^2+b^2+c^2+d^2=e^2,
let a = an odd integer greater than 1
let b = a+1
let c = 2a
Then d = ((c*(b+c))/2
and e = d+1
Then, consider a^2+b^2+c^2+d^2+e^2=f^2
a, b, and c are as above
now let d = b+c (the beginning of an off-set Fibonacci series)
then e = (d*(c+d))/2
and f = e+1
Then, consider a^2+b^2+c^2+d^2+e^2+f^2=g^2
a, b, c, and d are as above
now let e = c+d (the second member of the off-set Fibonnacci series)
then f = (e*(d+e))/2
and g = f+1
etc.
Some examples:
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
3 |
4 |
6 |
30 |
31 |
2 |
3 |
4 |
6 |
10 |
80 |
81 | | |
2.66666666666667 |
3 |
3 |
4 |
6 |
10 |
16 |
208 |
209 | | |
2.6 |
4 |
3 |
4 |
6 |
10 |
16 |
26 |
546 |
547 | | |
2.625 |
5 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
1428 |
1429 | | |
2.61538461538462 |
6 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
3740 |
3741 | | |
2.61904761904762 |
7 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
9790 |
9791 | | |
2.61764705882353 |
8 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
25632 |
25633 | | |
2.61818181818182 |
9 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
67104 |
67105 | | |
2.61797752808989 |
10 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
175682 |
175683 | | |
2.61805555555556 |
11 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
459940 |
459941 | | |
2.61802575107296 |
12 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1204140 |
1204141 | | |
2.61803713527852 |
13 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3152478 |
3152479 | | |
2.61803278688525 |
14 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
8253296 |
8253297 | | |
2.61803444782168 |
15 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
21607408 |
21607409 | | |
2.61803381340013 |
16 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
56568930 |
56568931 | | |
2.61803405572755 |
17 |
3 |
4 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
13530 |
148099380 |
148099381 | | |
2.61803396316671 |
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
5 |
6 |
10 |
80 |
81 |
2 |
5 |
6 |
10 |
16 |
208 |
209 | | |
2.6 |
3 |
5 |
6 |
10 |
16 |
26 |
546 |
547 | | |
2.625 |
4 |
5 |
6 |
10 |
16 |
26 |
42 |
1428 |
1429 | | |
2.61538461538462 |
5 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
3740 |
3741 | | |
2.61904761904762 |
6 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
9790 |
9791 | | |
2.61764705882353 |
7 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
25632 |
25633 | | |
2.61818181818182 |
8 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
67104 |
67105 | | |
2.61797752808989 |
9 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
175682 |
175683 | | |
2.61805555555556 |
10 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
459940 |
459941 | | |
2.61802575107296 |
11 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1204140 |
1204141 | | |
2.61803713527852 |
12 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3152478 |
3152479 | | |
2.61803278688525 |
13 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
8253296 |
8253297 | | |
2.61803444782168 |
14 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
21607408 |
21607409 | | |
2.61803381340013 |
15 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
56568930 |
56568931 | | |
2.61803405572755 |
16 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
13530 |
148099380 |
148099381 | | |
2.61803396316671 |
17 |
5 |
6 |
10 |
16 |
26 |
42 |
68 |
110 |
178 |
288 |
466 |
754 |
1220 |
1974 |
3194 |
5168 |
8362 |
13530 |
21892 |
387729212 |
387729213 | | |
2.6180339985218 |
|
a |
b |
c |
d |
e |
f |
g |
h |
i |
j |
k |
l |
m |
n |
o |
p |
q |
r |
s |
t |
u |
1 |
7 |
8 |
14 |
154 |
155 |
2 |
7 |
8 |
14 |
22 |
396 |
397 | | |
2.57142857142857 |
3 |
7 |
8 |
14 |
22 |
36 |
1044 |
1045 | | |
2.63636363636364 |
4 |
7 |
8 |
14 |
22 |
36 |
58 |
2726 |
2727 | | |
2.61111111111111 |
5 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
7144 |
7145 | | |
2.62068965517241 |
6 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
18696 |
18697 | | |
2.61702127659575 |
7 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
48954 |
48955 | | |
2.61842105263158 |
8 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
128156 |
128157 | | |
2.61788617886179 |
9 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
335524 |
335525 | | |
2.61809045226131 |
10 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
878406 |
878407 | | |
2.61801242236025 |
11 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2299704 |
2299705 | | |
2.61804222648752 |
12 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
6020696 |
6020697 | | |
2.61803084223013 |
13 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
4414 |
15762394 |
15762395 | | |
2.61803519061584 |
14 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
4414 |
7142 |
41266476 |
41266477 | | |
2.6180335296783 |
15 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
4414 |
7142 |
11556 |
108037044 |
108037045 | | |
2.61803416409969 |
16 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
4414 |
7142 |
11556 |
18698 |
282844646 |
282844647 | | |
2.61803392177224 |
17 |
7 |
8 |
14 |
22 |
36 |
58 |
94 |
152 |
246 |
398 |
644 |
1042 |
1686 |
2728 |
4414 |
7142 |
11556 |
18698 |
30254 |
740496904 |
740496905 | | |
2.61803401433308 |