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Abstract

Linear quadratic Gaussian (LQG) controllers have the potential to redggstém noise in synchrotron storage

rings below what is ordinarily achieved with conventional proportiamiggral (Pl)regulatos. But realizing this
possibility requires careful degn of theregulatorto match the characteristics of the machine (which is simplified by
top-off operation) and is computationally demanding. This study devéh@asetical andomputationatoolsfor

the construction of QG regulatos for discretdime models of singlecavity rf systems coupled to rigigunch

beams, and driven by rf amplifier noise. Matlab’s cortigdtems toolbox (CST) is the primary computational tool,
particularly for the steadgtate Kalman estimator, the LQR feedback, and_-@D& regulator Of the rf signals
available to theegulator a subset is chosen that results in a stable, effective, and econeyidator This
floating-point LQG regulatoris then analyzed to establish resolutions of state variables, ADCs, DACs, aind ma
coefficients that, in a fixeghointregulator provided essentially undiminished performance. A Simulink model
computes beam noise in linear and nonlineaygtem models with floatingoint, fixedpoint, and proportional
integralregulatos. Thismachinery is applied to NSE:B, CLS, and NSLS VUV rings showing bandwidth and
amplifier noise suppression beyond what ad@julatorcan do. Required signal resolutions are surprisingly
moderate. Testing and tuning with response functions computedalspwsimulations are performed. Thoughts

are given on the further validation and tuning of the linearized model by machine measurements, implemientations
logic, anddistributed architecture for multiple cavities
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2 Introduction

NSLSHI is to bea state of the art synchrotron light source with unprecedented brightness and transverse emittances
[1]. Timing experiments demand the most stringent tolerance of beam phase and energy noise of any experimental
technique. Theetolerancedor short (unstretched and compressed) bunahes factor of ten or more below

expecte noise generated by klystrodsving thecavities soa great deal of noise suppression with substantial
bandwidthsarerequiredof the rf system Landau cavities to lengthen bunches and extend lifésrteebe more

commonly usedby other experimentbut someother experiments usirthesestreched bunchestill require a high

degree of energy regulation to utilize the high spectral resoluticadidtion emitted bynsertion device$l].

The primary noise issue in the rf systemfinoise from theklystrons due to powessupply ripple which results

primarily in phase noise. Feedback around the klystron is a way to suppress this noise before it becomes more
deeply entrenched in the rest of the rf system, but klystron saturation is an issue that complicates such a solution
[20]. A phase loop ia simpler solutiortapable of largely suppressing phase noise because it is largely decoupled
from klystronsaturation. But thers still residualamplitude (and phasepise that exceed toleranagken only

this loop & used

A linear-quadratiecGaussianl(QG) regulator{2, 3, 4] utilizes knowledge of the workings dffs targetsystem (the
‘plant’ to be regulatedto minimize in a leassquares sensan object functiod consisting othenoiseof critical
internalsdetermined, in the case aflight sourceby the needs of the experimeni)s aquadratiomeasure of the
cost of controllinghe plantvia the plant’sinputs(rf drive), while the plant isdriven byits noise sources.
Comprehensive and accurate modelthefdynamics of the system being controlled and the noise ditvéamg
requiredto synthesize these regulatoi/hile those needs can be onerousséhegulatos can be astonishityg
effective

Rigid-bunch models of the beam are capable of accyrdtscribing short bunch¢s,14] in synchrotron storage
rings While this is not possible for fullgtretched buncheggid-bunch models are still capable of describing
partially stretched bunches with sefént accuracyhatL QG regulatos arestill effective at the same time
stretching providesufficient lifetime improvement to meet the needs of the madniadets users ThusLQG
regulatos can be applied to NSESfor partially stretched bunches aglvas for unstretched or compressed
bunches.

This study explores the use of stafgce models andQG regulatos and their digital implementatioris the
NSLS I storage ring.Because these of LQG regulatos can be comprehensive as easilyat the function of a
klystronphase loop is not treated separatblytis instead absorbed into th€G regulator

In an rf system, noise bandwidths and the complexity opthetto beregulatedby anLQG regulatorare

sufficiently large that a great deafl computing power is required to implement tegulator A field-

programmable gate array (FPGA) is needed to meet this need, particularly witlpdixedomputatiordue to its
economy in logic In digital control of analog systems, noise issues draa both the analogp-digital (ADC)
conversion at theontrollerinput, and the digitalo analog conversion at the output of the controller. The objective
functionJ of the LQG formalism determined by plant specifications and the cost furagjgiedto the closedoop
systemprovides a means to evaluate the tolerable noise introduced by quantization, and hence the ADC and DAC
resolutions on an inptiy-input and outpuby-output basis.Finite resolution of computations internal to the

Kalman estimair, particularly to the kernel matrix computation, also introduces quantization noise that must be
evaluated. These sources, too, can be evaluated and controlled by the use of the objective function applied to the
closedloop system where tolerable restduns are imposed on resultstbe kernel calculation (th& matrix
product)determining evolution of the state variablés this way it can be assured that tiegulatoris capable of
providing the performance needed for the task, without throwingagdwatkbits that add to the cost, the heat load,

the bit error rate in the computation and programming, and failure rate of the controller.

The kernel calculation is computatidhaintensive because the kernel (fhenatrix) is a relatively large matrix.

The dimension of the matrix the number of state variabless eight for each cavity plus twice the number of
bunches. More than one bunch may be included to accommodate the possibility tegtkercan be used to
suppress nearby coupkpdinch males and coupleunch equilibriuraphase instabilities, which are a problem in

large ringq 6] because they are driven by thecdvity accelerating modes. So the number state variables and matrix
elements to be computed is rather large. The good netvgsofnont is that the kernel (and the regulator as a whole)
may be transformed by a similarity transformation, one that leaves the kernel block diagonal with at Abyst two



two blocks. In this form, the kerned much less computationally intensive andynbe computed serially with two
multipliers. Although such a kernel transformation leaves the B and C matrices dense, those matrix products are to
be computed via a multiplgccumulatearchitecturaunaffected by the transformation.

A single-cavity digital architecturds developedn Sec.5.2, one that serially computes tAeB, andC matrix

products during the sampling interval. The sampling interval oL@ regulatoris to be in the ongo two-MHz

range, while the lowevel datarate of the controller is to be about 40 MHZ. Two multipliers/accumulators for

the A matrix, and a multiplier/accumulator for each row of B (inputs), and each column of C (outputs) implement
the computations serially with sufficient timeenthe LQG sampling interval to process each set of samples without
additional parallelization Prototype logic in Verilog8] was developed and simulated to verify the logic design of
the singlecavity regulator although no effort was nda to test in haware for datgorocessingapacity, or to add
pipelining for this purpose.

With multiple cavities, the number of state variables associated with cavities is multiplied, while the beam degrees
of freedom remain the samé a natural digital architectufer multiple cavities described in Set4, each cavity

has a digital controller antthere is a syste#evel controller. The\, B, C, andD computations are distributed in a
natural way among the cavitggulatos and the syenmtlevel regulator while the system controller has a further
datadistribution function.

This entire endeavor requires having an accurate linear model of the actual rf/fbeam system within which the
regulator is embeddedlhe scope of this study doestnonfortunately, include development and testing ©fG
regulatos with beam on real machine8s a substitutesynthesizedegulatos were tested against linear models
derived from Vlasoxcomputed impulseesponse functions. In this way, the poteniaiformance oL QG
regulatos was assessed against independent models having a degree of realism.

Looking beyond Vlasov models of machinascurate machine measurements are ultimately required from which

plant models are accurately fitt i§ suggestechat each controller have embedded in its logic a frequdbayain

network analyzer capable of exciting the rf system and synchronously measuring the system’s response. This route
provides assurance that system measurements use the same hardwanegaksittie use to control the system.

Such measurements would be undertaken periodjqahhaps dailyand would entail download of the updated
coefficients to the controller(s)

Although a number of software packages exist designed for the developnm&Gakgulatos, in this study
Matlab[9] and its Control Systems Toolbaxas usedor the synthesis of theegulator andMatlab’s Simulink was
used for simulatingynthesizedegulatos and assessirtheir performancevhile acting onlinearizedmodek and
with nontlinear Simulink models Please consult the documentation for Matlab and other Mathyb@kgroducts
as needed while reading this repguarticularly while reading Se8. Also consult Hindi’s notesl[1] or other
saurces formathematicabackground regarding lineguadratieGaussianmegulatos, and Moroney’s dissertatio]
or other source for a survey of quantization naisd more generally the synthesis of L@&gulators

In the resof this reports describe the steps involved in the constructionadfloating-point) regulatorincluding
the rfsystem model and its linearization into a Matlab LTI object (Sgdiow fixedpoint regulatos are
construted (Sec.4), the mechanics ahodel tuning and validation via machine measuremamdsVlasov response
functions(Sec.5), the application of these ideas to NSlLSCanadian Light Source (CL$)7], and NSLS VUV
rings (Secb), andarchitectureand desigrof fixed-pointregulatosin logic (Sec.7).

3  Floating-point LQG regulator

There are a number of steps invadl in the construction of tHeating-point regulator The most basic atae
construction of the linearized plant modile Kalman estimator, LQR feedback, and tiiG regulator But prior
to these steps, processing delay must be incorporated entodtel. Then, plant outputs available torbgulator
must be chosen based on stability and performarag kernel transformation is used to simplify the kernel
computation.

3.1 RF system linearized model

The rf system model isf a rigid-bunch beam im singlecavity ringmodeled in Simulink In Figurel, the
particles blocks models the motion of poitike bunches ifongitudinalphase spacg, €) under the influence



of voltage kickseach revolutiortoming from theRFMbde block (for the fundamental accelerating modahe rf
mode is driven by impulses from the rf amplifier and the bunches passing through it (q and tau inputs, respectively).
The Amplifier block models the klystrgrand thecoupling  block handles conversiorf waveguide fields to
equivalent charge impulses driving the cavity antputsforward and reverse power intensities. RF feediatke
RFfeedback blockis there to suppress the reactive Robinson instability shaherent in superconducting
cavitiesdriving rigid-bunch beam§l2].
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Figure 1. Basic singlecavity rigid -bunch mode in Simulink.

The synthesis of eegulatorusing CST requires starting withe model oFigurel. The functionLTIBuild.m
handleghe synthesis of thetatespace model

Iti = LTIBuild('LTI5', 100000*Ts);

The first argument is a string that specifies the name of the Simulink modeltibse extension is .mdl. The
second argument theduration of simulation, after whicls itaken the operating point about which the model is
linearized.It i is a statespace object returned by the functidhintegrates the statgpace matrix equations

X, = AlX, +Blu, +Glw,

1
y,=CLx,+D, +H W, @)
The matrices are all computed byIBuild and are contaed inlti . The vectou is to be used as a control
input, the vectow is noise inputx contains the internal state variables, sradte outputs. The matri | term here
the kernel.B andG are both contained in a single matitix .B = [B,G]; similarly for D andH contained in
Iti .D =[D,H]. The division between B and Glin .Bis for now one of interpretatiotieterminedoy the goals
of the model.

The basic model of Fig. 1, once linearized, is described by eight state variables. Additionadsédties are
required to accommodate shaping of the noise spectra and themigoessing delay (discussed later).

There are a number of steps needed to prepare a model like Fig. 1 for linearization. To bedie aitiplifier

block and CESR cavitglock inFigurel are model blocks. Unfortunately, Matlab’s linearization functions don't
support model blocks, so the internals of these blocks must be copied to the model and model parameters replaced
with values from the worksace.

LTI5.mdl of Figure2 has these changes and also shthe addition of five inpupointsand eight outpupoints

made availabléor linearization. Two of the input points are the | anglaser components afin of Figurel, two

are | and Q phaser components of the noise injected at the klystron output, and the fifth is a field intensity applied to
the input of the particles block. The | component of the input I/Q pair is aligned with the nqpinas&iain and
normalized taain . Similarly for the second I/Q pair at the output of the amplifier and the nominal piaskere.

(ain anda0 are computed wheNSLSIl .m is run. NSLSII .m and the files it calls define many machine

parameters in the worgace.) The fifth input is meant to be a bro#@nd kicker such as a strip line. Butaven't

done much with it becauseuch too muchf power is needed there toake a difference.
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Figure 2: Full model used for linearization.

Each input and output point in a model to be linearized should be given a unique name. These names are used to
specify the particular outputs to be taken as inputs byetipelator and which inputs are to be supplied with signals

by the outputs of theegulator How this is done during construction of tiegulatoris described irsec3.5. The

names are contained in cell arrays assigned to the proggrties nputnames andlti.o  utputnames of

Iti . Statevariable names are ntained in the propertyi. state names. One refers to inputs, outputs, and

state variables by their more user friendly names instead of by index. The names should be chosen so that the noise
inputs are ordered after the signal (control) inputs.

Discree-time models used for linearization should use the memory element instead of, &g, ¢hement. The
latterblock does not have the option to treat it as a delay for the purposes of lineariz&ftiemz ™ is used, esults
are all wrong.

Theparticles block of Figurel is able to handle an arbitrary number of bunches in a symmetric fill. Three
bunches were for now chostar the NSLSII modelso that one time step is a realistic number for thegdelay

in the amplifer chain, which incapsulated in thempDly block of Figurel. The correct number of delay
elements must be added to theaticles block of Figure1 by hand.

3.2 Incorporating processing delay into the model

Processing delay is an integral part of the feedback loop. It must be built into the model even though it is physically
part of theregulator But adding memory elements to the inputs of the model generates an error when Matlab’s
linearize is run. To get around this problem, tivgputdelay = propertyof the signal inputs (but not the noise
inputs)of the linearized modeak set to 1in effect adding a orenit delay to the signal inputsThen Matlab’s

pade function is run. That functionsonvertsthe input delays to poles on ta@lane without errors.

A result of the addition of delays is thaete are new state variablia the model, onéor each input with a delay.
(Minimizing the number of state variablesi® reason to apply delaysaaly the signal inputs and not the noise
inputs) LTICovR gives the new state variables names.

3.3 The Kalman estimator

The Kalman filter estimates the plant stateiables using a set of noisy inmitrom the plantgiven knowledge of
the plant dynamicsstatistcal properties of the input noise, and properties of the readout noiseThe particular
outputs available to the estimator may be chosen at will, although the stability and performande&Qd the
regulatordepends on the choice. Input noise is spetiby a covariance matriW/ = {u - u"), where thangle
brackets indicate a statistical averagelw is white noise over the sampling bandwidth. In the mbadéb , the
filterslpl andlp2 roll off the white noise at 10 kHz to better simulate the kiysinoise spectrum. The diagonal
elements ofNV are chosen thahey represent% amplitude nois@nd 3 degreeghase noise in 2RHz bandwidth

Off diagonal elementareset to zerdo simulate uncorrelated noise.



Similarly, the readout noise associateithwihe outputs has covariance matrix = {v - v'), wherev is a column
vector with the same dimensions as the outpuf§he estimator inputs see the noisy outpytsy + v. Fairly
small values of noise are chosenYobased on ADC data shegasticipatingquiet ADCs.

From there, the Kalmaastimator is generated by tkalman function.

3.4 LQG regulator and the closed-loop system model

Feedback from the estimator state variables back to the estimator and to the plant is determined by the matrix
minimizingJ = (x"* Q* X) +(u" * R* u), where usersuppliedbeamphase andenergynoise tolerances defir@,
andthe cost associated with nexeroeffort u definesR. The beanbased tolerances specify maximum rms jitter in
T ande = JE/E; the reciprocal of the squares of these numbers are eiéodtie diagonal of with other elements
being zero. Since there is a great deal of power available in the rf system, cost of the effosnral] and

relatively smallR is choseraccordingly.

From there, thdatlab (Control Systems Toolbof)yncton digr returnsthe feedbackmatrix K given the matrices
A, B (B for signal inputs, but ndg for noise inputs)Q, andR.

The functionlggreg returrs the LQG regulatorgiven the estimator and the feedback matrixTheregulatoris a
Matlab statespaceobject with its ownA, B, C, andD matrices, as well as other properties.

The functionfeedback takes the plant and thiegulatoras inpus and returns the closddop system having the
same inputs and outputs as the plant.

3.5 The choice of signal inputs

A problem with usind-QG regulatos is that they need not be stable. This does not mean thagtiatorcannot
controlthe plant but that it is stabilized bfeedback fronthe plant while it suppresses noise in the plant. The
numerical experimentepored here show the best performance with unstadggilatos, which tend to have higher
gain particularly when there is low opdoop group delay But there are practical problems associated with
unstable regulators. One is thetenfeedbackis broken,theregulatorstateblows up. Another is that the high gain
makes the closelbop system (plant and regulator) more sensitive to variations of the behavior of the plant. To
make the use of these regulators simpler for now, it is suggested that staladtorsdne used initially, that simple
proportionalintegral (Pl)regulatorbein parallelwith the LQG regulatofor useduringinjection, top off, etc., and
havinga digitalarchitecture that can smoothly switch between thBarticularly during initihtests, djital logic
canbriefly switch from the PI regulator to an unstable LQG regujatata buffersand logiccansubsequentlgetect
an unstable closeldop system.This strategymayprovide afuture pathto theuse unsthale regulatos should thei
gains be found to be needegfective, and robust

Sa for now, there is a need to find stabikegulatos. One strategy for doing this is to insert additional delay into the
loop. Alternatively, ssubset of plant outputsan be chosethat, when usgto synthesize theegulator resultin
stableregulatos and acceptable closémbp performance Fortunately, vith the eight available outputs bfl 5,

there araypically a number of solutionslthough theCLS model is an exception with only one udefolution.

One can test individual combinations using LTICovR with the syntax:

[Itinew  syskreg  kregQ var] =LTICovR( ...

Iti, % the LTI object (the plant) frortibuild

{InAM', 'InPM'}, % cell array ofplantcontrolinputs (of the three in LTI5)
{Kly AM,"' Kly PMY}, ... % cell array oplant noisanputs (of thewo in LTI5)

{vi " VvQ, 'tau'l ,... %cellarray ofplantoutpus (of the eight in LTI5)

Input delay, ... % input delay in LQG samples

Q... %inJ=("*Q x)+u""R-u)

R ... %inJ={X"* Q- X)+u"*R-u)

Vv, ... %V ={v- V") plant readbacksioise covariance matrix
W... % W=(w-w") plant noise inputs covariance matrix
S, . % scale factor for quantization noise toleraQes= sQ



2~ -[10750], % global A-, B-, C- andD-matrix quantization resolution
false, % boolean that specifiewhether to plotegulatorresponse functions
true ... % boolean that specifies whether to print performagiegnostics

);

Outputs:

 Itinew islti stripped of unused signand noisenputs,

» sys is the closedoop systen(with floating-point regulatoy,

e kreg is the floatingpointregulator

» kregQ is the fixedpointregulator and

« var is an array containing<' -+ Q- x) and themaximum magnitude dhe kernel eigenvalues.

To process all possible combinations of outputs for a given set of inputs searching foregjalaltos, there is the
functionbincomb with the syntax:

bincomb(model_string, {INAM' 'InPM' }, tol | inputdelay, chi2 );
Its agumentsare

* model_string is a string specifying the LTI model to be linearized, typically ‘LTI5’;
e The secon@rgument specifieglantinputs output by theegulator(one of three i TI5 );

« tol specifies a tolerance féx' * Q - x) below which resultsareprinted:;

* Inputdelay s the processing delay in time stepglag to the input of the model; and
» chi2 isa sensitivity parameter used in the kernel scaling analysis discussed later.

For output combinations wittx" * Q * X) below the tolerancéincomb prints out(x" * Q * x), the maximum
eigenvalue magnitude, and the combination of outputs used bgghktor tol = 1 returns a lot of hits with

LTI5 . They are clustered around 0.1. Beam noise at thesupgtiednoise specificatioris (x' * Q* x) = 2.

3.6 The kernel in block diagonal form

From a computational perspective, there is quite a lot of computing to be done each sample timeguyattos
even with the sample time being nearly a microsecdritere is a aedto avoid doing more computing than is

necessary Given any norsingular matrixSthat acts on the vector of state variables, the regulator transforis as
=S-A-S' B'=S-B,C'=C- S andD’= D without changing the external behavior bétregulator. The
largest single block of computing is the x matrix multiply containing nearly 200 multiplies. A suitable

transformatiors can be used to greatly reduce the number of multipliés'in The function
LTIStateVarXForm  in Matlab codeperformsthis transformation.

SinceA is nonsingular, it can be reduced to a diagonal mati&a similarity transformatianBut many or most of
its eigenvalues are complex, which makes the similarity transformatidrthe transformed complex valued.
Because the original model is real, #igenvalues are in conjugate pairglying thatA can be reduced to real
block diagonal form wherthe complex arithmetic is done in real tlsg-two blocks. Thus\ can be reduced to
block-diagonal form where thmaximum block size is twoMatlab convenientlyhas the functiomdf2rdf  that
performs this transformation.

TheA - x product is reduced by this transformation to typica#t multipliesand the nofzero matrix elements &
of stable systemseem tdit neatly in the-1 to 1 scale

The state variables are also reorddredTICovR so that those with realalued eigenvalues are grouped together
at the end. This is done so that they can be paired, making the kernel uniformligiblpakal with block siz two,
anticipating the synthesis of fixggoint regulatos, wherethe serialhardware performing the kernel computatisn
simplified. But theregulatormust have an even number of statgiables for this to work.



4  Fixed-point LQG regulator
This sectiorlooks at the construction of a fixgmbint regulatorfrom a floatingpoint regulator This involves:

* Quantization of the signal path, including quantization of state variables42gdit widths of the analotp-
digital canversiors, and bit widths of digitato-analog conversiay(Sec.4.3). Quantization of state varialsle
requiresassuring that quantization noise associated with-staiable resolutions are by some measure
insignificantto the performance of the closéabp system.Quantization noise associated with ADC and DAC
resolutions mussimilarly be insignificant to the performance of the clo$edp system. Underlying these two
topics are methods to ensure that matrix productsngawultiplies and sums of several terms, preserve
precision close to the level set by the dagghresolution(Sec.4.1).

» The degree to which an LQG regulator, when represented by-firétasion matrix elements, has projest
that remain sufficiently optimal that performance of the cleseg system islegraded by tolerable degree
(Sec.4.4). Resolutions required to meet this condition are determined by directly testing in numerical
simulations.

The basidixed-pointregulatormodel isshownin Figure3.
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Figure 3: Fixed-point state-space model shoimg saturation and quantization blocks.

Sigmal is referred tm this reportas the kernedummation point.

4.1 Quantization noise and numerical precision

The truncatiorof numbers in a fixegboint processor results in errassing fromthe resulof a calculatiorbeing
different from theexact calculation This error is a sort of noise introdacky the truncation (modeled as) having a
uniform distribution on the-p.5, 05] interval(when roundingpf the least significant binary digit. This is the noise
that one seeks to reduce by increasing the number of bits used to represent numbeeshpointi processorlt

has variance,” = 1/12

When there are severatidendsummed togetheall rounded to the same resoluti@md each with noisey, the
noise associated with thedividual termsare also summegssuming noise arising from themications of the
individual terms are uncorrelatedThus the variance of the sumd$= nay?, wheren is the number of terms in the
sum. The sumhasleast significant bits that represent only noi§me then removes least significant bits by
roundingso that all or most of the noigethe rounded suris removed.

Looking ahead for the moment, the resolutions at the summation poffiguré3 should at this point be regarded

as fixed by the analyses of Sed2 and4.3, which determineesolutions needed to meet the system noise
specification. Since these points are all sums of products, there is spare resolution of addends coming from the
products, which we can aw on to meet the needed resolution after each sum. These extra bits are here termed
‘extra accumulator bits'or EABS,bitsincluded in the sum buhatare stripped away after the suwe then ask,

for a given number of EABs, how much noise remaingérounded sum as a function of number of terFigure

4 answers this question in terms of effective number of bits (ENBS).
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Figure 4: Quantization-noise effective number of bitfENBS) vs number of erms summed for Othrough 4
extra accumulator bits (left) with rounding, and ENBs vs Gaussiamw (right) of quantized data The left plot
comes from a Monte Carlo calculation.

By ENB is meant the average number of bits of informatiamied by each numercode:
ENB= Zi (=p))1og,(p,) ., where p, is the frequency (probability) of theth numeric code. More generally,

the sum may be over any symbol set carrying information over a communications chEma&@aussiag is
related tolhe effective number of bits (ENBs) lost to quantization noisEigyre4 right. For largeo,

ENB~log, (v 2720) . Figure4 left shows thatfor large number of termghere is roughly a bit of redtion of
guantization noise with each extra accumulator ¥e add EABgo0 a particular sumntil theresidualnoise is
essentially zero.

Figure4 left is computed for rounding. When truncation is used instead of rounderg, ithoscillatory structure in

the tracs. Although this was not investigated, it is possible that the troughs may be used to advantage at the nose
numbers of term. But the structure may be sensitive to deviations from white noise (time or otharawm)yelgor
thisreason, in this report thructure isconsideredinwanted and necessitates the use of rounding in-fiedd
arithmetic.

Figure5 illustrates bit depths through the multipdgcumulate cycle adn inner prodat orarow of amatrix

multiply. On the diagram, ‘ois€ refers tothe accumulateduantization noise discussed in this sectidhe extra

bits of resolution available for EAB&reshown on the diagram as the difference in resolution between the product
and the result.

ovcrﬂowI
cocf result
.
T —
.
data T 77 extra
[ . L _ _ I}Di_ﬁf-_a_(i)its
N L accumulator
product

Figure 5. Bit depths while processing aow of a matrix product.
This diagram is integral to the discussions of the next two sactlarthese sections,

e asensitivity analysis determines the resolutiorhefADC, whichis oneof the two'data’ of the kernel sum;

* asensitivity analysis determines the resolution of the state variables, avhlobth a ‘data’ and the ‘result’ of
the kernel sunfthere are nmverflow bits); and



e a sensitivity analysis determan the resolution of the DAC, which is the ‘result’ of the C and D matrix products.
From therghe number of terms in each suamdFigure4, determine the EBs in each sum.

Of the allocated global budg%2 for quantization nois carried through the closédop system te?, each input,
output, and state variable is allocated an idenﬁ@n, wheren is the total number of inputs, outputs, and state
variables.

4.2 Kernel scaling and state variable quantization

The basic ideafahis topic is todetermine and apply kernel transformatiothat scales regulatorstate variables so
thatnoise ofvariancedue tostatevariablequantizatiortogethemresults in a perturbation of ttebosedloop (time-
averagedk® = (x' -Q -» of theplantthatis below significance By ‘below significance’is mear a factor ofone
hundredor morebelow thetarget(x" -Q -% derived fromusersuppliedtolerancs. Since the state variables are not
necessarily physical, we take the scale of quantizéi@ach cas& besimply one. With such aransformation,
the resolution of the fixegoint state variables may saféddg set to one.In this analysis it is assumed that
guantization noise of the state variables are all uncorrelated.

This calculatioris performed by constructing tmimericalmodel ofFigure6, which is a closedbop model of the

plant controlled by the floatirgoint regulator In this model, theegulatorhas additional input®neinto each
summation poinbf each state variable in thegulator Thosenew inputs a& interpreted as noise inputs, where
noiseof knownvariance is applied one state variable at a time, anléme(x" -Q -} computed. This results in a
diagonal sensitivity ratrix. In the scaledegulator(after a kernel transformation scaling the state variables) we want
the diagonal elements of that sensitivity matrix to all be of the same wedngoned in the previous paragraph.

This way, the quantization noise of natst variable predominates over the oth€For reasons not known to me,

this stepmustbe iterated. Consult the source code for details.)
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Figure 6: Kernel summation point sensitivity analysis.

This calculation is done by yrfunctionLTIQNoise State . In it, the Matlab functiorcovar is used to compute
statevariable covariancenatricesX = (x -X) given a statespace model and noise inpuX.is used to computiae
figure of meritx? =(x" -Q -} = traceK -Q.

This procedug establishes the resolution of the state variables, i.e., the smallest signals that matter. But it does not
establish how large the state variables might become, i.alyttanic range Simulations show the magnitude of

the noisedriven signals presemin the state variable. They presumably have a Gaussian distribution. One can
assign a maximum magnitude as some factor times the Gagssan, @, althoughthis prescription may not

allow theregulatorto accommodate other than Gaussian noise sources, such as 1/{0misethe range is

established, the correct number of bits can be assigned to the state variable.

As will be discusse later, | anticipate that tHeQG regulatorwill be only be used during user time. Given this
scheme, theegulatordoes not need to contend with injection, ramping, etc, although there are still drifts and
glitches that are inevitably going to be preserthe machine to contend with. S cannot be definitive about the
number of bits needed to represent state variables.

Closedloop simulations of models of three machines with fipmint regulatos all show thasomeof the state
variables are alwgs zero, at least when excited by the noise model. This is interesting in that there is the possibility



that some of the state variablmay be dropped. Doing so eliminates those elements oé¢judatormatrix A as
well as rows and columns 8fandC, respectively, significantly reducing tlmegulatorworkload.

4.3 Analog-to-digital and digital-to-analog converter resolutions

In Sec4.2, the impact obtatevariablequantization noise was assessed by computing, based orstfsai model,
the impact of that noise ahe figure of merit®. In a similar way, we assess the impact of A@8d DAC)
quantization noise og’ using analogs of the model Bigure6, shown inFigure7 andFigure8 for ADCs and

DACs, respectively FollowingSec.4.2, we proceed byt) applyingknown noise variances to the inputs (outputs)
one at a time2) computex?, and3) scaletheinput (ouput) noise varianeto meet théudgetedc®. In this way,

ADC (and DAQ resolutions that provide the quantization noise variances that match the tolerable input (output)
noise variancesfor individual inputs (outputs) are determined. The numberhifs required of each input (output)
then becomes the baseo logarithm of the required input (output) rangi¢ ranges aref order +1 in fractional
units) divided by the resolution, with adjustment upward to an integer.
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Figure 7. Model used to assess the closéabp system's sensitivity to noise introduced by quantization in the
ADC.
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Figure 8: Model used to assess the closéabp systems sensitivity to noise introduced by quantization in the
DAC.

The calculationfor theinputsis performed in Matlab by thiinction LTIQNoiselnput which takes as input the
plant LTI model, the floatingpoint regulator LTI model, a sensitivity mati@, and a print flag for diagnostics. The
function returns the jput noise variances, one for each input, that g@atas determined b@, where n is the total
number of inputs, outputs, and state variableElQNoiselnput again relies on the Matlab function covar to
compute covariance matrices from the clekezp model.

Paralleling the input calculation, the outmalculation is performed in Matlab by the function LTIQNoiseOuput,
which takes as input the plant LTI model, the floatpaint regulator LTI model, a sensitivity mati@ and a print
flag for diagnostics. The function returns the tolerable outpuengisiances, one for each output, that nxéat as
determined byQ, wheren is again the total number of inputs, outputs, and state variables.



Let us briefly review this strategy for the management of quantization noise irdoietregulatos. Inputs,

outputs, and state variables each cbute noise due to quantization. Assessing the impact of this nojceasn
described in thisection and Sed.2 allows us to adjust resolutions so that nohthe sources (inputs, outputs, and
state variables} significantly higher than the rest, and that all summed together do not break the noise budget
imposed by the purposef the machine First, each of the three functions LTIQNoiseState, LTIQNoiselnput, and
LTIQNoiseOutput by design impose a tolerasiegleinput, -output, and-statevariablex? that is the tolerable
systemy? divided by the total number of inputs, outputs, and state variables, the fatue to the summation
noise source@vhich are assumed uncorrelatedecond, one further provides a sensitivity mafyix Qq to eachof
the three functions LTIQNoiseState, LTIQNoiselnput, and LTIQNoiseOutput that budgpiantization noise a
level of noise that is small compared to the system noise demanded by the purposes of the(anlacigveay of
saying that we add a few mor#dito the quantized quantitlesThese bit counts are then applied to the precision
scheme ofrigure5 for each input and output.

When applied to a model of the NSILST system with rigid bunches, to be discussed in more Het&ec.7.3,
computed bit widths are in the rang@to 12 bits for the ADCs, and 7 or 8 bits for the DACs when the ta(git
1/100 the machine specificatiogfi. So statef-the-art ADCs and DACs are not required fbis application.

Signal | Tolerable variance | Minimum bits
Inputs

VI 2.8 x 10’ 11

VQ 5.2 x 10° 12

tau 8.9 x 10° 11

Outputs

INAM | 6.6 x 10° 7

InPM | 2.9 x 10° 7

This result can be further illustrated by computing (simulating) rms beam phase mbisesan energy noise as a
function of ADC and DAC resolutions, all ADCs, and all DACs set to the same number in @ikgdclosedoop
model. Figure9 shows the results of simulatioft anonlinear NSLSII model anda fixed-point regulator
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Figure 9: Simulated RMS noise vs uniform ADC and DAC resolutionsin a closedloop NSLS-1I modelthat
is driven by amplifier noise of 1% amplitude and 3-degrees phase rolling off at 14kHz frequency.

These redits suggest that rather modest performance is demanded of the ADO#&\&sd These figures may be
modest enougthat there may be some skepticiewer them To allay this skepticismt is instructive to compare
the noisdigures associated witthe beanphase specification and comp#nemwith those of high performance,
high-speed ADCs. The 0.1d degreenoise figurd 1] corresponds t6.24% of carrier intensity, 6x10n terms of
carrier powelin the beam signabnd-52.2 dBcin something like 2&kHz bandwidth Noise outside this bandwidth
does not impaatnostexperiments.

Contrast these figures with two Linear TechnoldgyC) ADCs, thel4-bit LTC2249, and the 16it LTC2209

The former’s noise is 021% of a sinewave carrierms 4.6 x10° of carrier power;73.3 dBc, 11.6 ENBsand
0.012 rf degree phaswise equivalent over the full sampling bandwidirhe latter's noise is 014% of a sine
wave carrierms 2x10% in terms of carrier poweg remarkable77.2 dBc, 12.3 ENBsand 0.008 rf degree phase
noise equivalent over the full sampling bandwidithesenumbersare at high sample rates.



Figure10 showing ata taken at CLEL3] using H. Ma’s digital cotroller [7] further illustrats the magnitudesf

these numberslt showsthe cavitysignal spectrum from a large tirtkwmain data set while controlling the rf

system with 256mA beam in the ring. There are many spuriousspélines superposed on a continuum
background, the teer with densityat about- -118 dBc per Fourier channel. Total noise recorded by the controller
in the +50-kHz bandwidth is68 dBc, or, in terms of phase noise, 0.023 rf degrees rms. So tretlidesed quite

low total noise irthe cavity and quite a low continuum noise flaafrthe signal. Yet ADC noise from the data
sheets is quite far below the signal noise, and the theoretical quantization noise floor is less still. So these data
illustratethatmodern 14bit ADCs do not limit the performance & digitalregulatorin this application.

lb = 260 mA, cavity noise in bandwidth = -68 3 dBc

& £ [
= = [=]
T T T
1 1 1

Intensity (dBc)
[m]
=
T
1

-10a .

-120
LTC2249 rnnise

140 - LTC2209 naoise .

-160 F iantization poiss ppr channel for B bits . .,
-50 -0 -30 =200 10 a 10 20 30 40 a0
Frequency (kHz)

Figure 10: Spectrum of the cavity signal from data taken by H. Ma, J. Rose, and H. Song at CL{%3] using
H. Ma’s digital controller [7]. The data were taken with feedback provided by the controller, and with beam
current at 250 mA. The dashedquantization noise per channelines arefor ideal 14- and 16-bit ADCs, while
the dashednoise floors are fromdata sheets for LTCADC chips LTC2249(14 bit) and LTC2209 (16 bit).
Total cavity noise within the +50-kHz bandwidth is -68 dBc, equivalent t00.04% rms amplitude, or 0.023 rf
degee. Dashed lines take into account the controller’'s foussample 1/Q detetion.

One caruse of the fact that the I/Q data rate is higher than the LQG sample rate to suppress the noise in the data
stream through a loypass filter prior to decimatio Given that the 1/Q rate is to be around 10 MHz and that the
LQG rate is in thd-2 MHz range, the oversampling factor is in the 5 to 10 range. This translates, for uncorrelated
noise, into that factor of reduction ofband noise variance, or one or two ENBs, plus some dilayto the

averaging

4.4 Matrix element quantization

The stée-spaceA-, B-, andC-matrix quantization is established direct wordlengthcomputation i(ef. [3], Sec.
6.5), i.e., byadjustingthe coefficient resolutionf a matrix collectivelyand looking for changes in the clasi®op
plantx?. The resolutions are sgb that the incrementgf in totalis below significanceén terms of tolerance
Including the sign bit, resolutions tend to be about 12 bit&\f@rbits forB, and 7 lits for C. More specific values
are given for NSLSI, CLS, and NSLS VUV models sections.1, 6.2, and6.3, respectively

Since the architecture of the controller allocates distinct multipliers to the roB/amd cdumns ofC (to be
discussed in Set.1, Figure24), one may alternatively assign distinct bit widths to the rows and coloffrthgse
matrices Such an approach takes advantage of variations of is@mife among the inputs and outputs and may
yield some economy of logic.



One further verifies that th&matrix quantization has not significantly chang®d largest eigenvalueompared to
its distance to the unit circle

5 Model tuning

As was mentioned eligr, the success of LQG regulators is dependent on accurate linearized plant models from
which these regulators are synthesizdldimerical rfsystem models that hawet been tuned to match a machine
can stillqualitativelyresemblehe behavior oshortbunch beam a singlecavity rf systeni14], but theyare not
sufficiently accuratguantitativelyto serve as templates from which regulators are synthesizesdnot clear even
with the numerical sensitivity experiments discussed earlier how sengitLQG regulatomight be to quantitative
details of the model. Sathink it is essential to perform machine measuremesisg controller hardware with
whichto fine tune the model before contemplating tests of a controller in a machine.

Even withthe modekarefullytuned to the measurements, discreparaiesstill expectethetween the two
particularly when the modédils to capture arlementacomponent of the machine’s behavidxamples ar¢he
existence of quadrupole and higieder multpole modedunchesand potentiailvell distortiondue to broa¢band
impedancesTo address this issuefarther test is to run theontrolleragainst a model fit to the full details of the
measurements.e.,a modelthat isfaithful to the measurement£ollectively, the response functiormse numerous
and contain a great deal of structure; as such, marg statevariadesare required to represent thénanin the
rigid-bunch modet no doubttoo many to be used to construct a practic@s regulator Nevetheless, it can be
used to verify that thelosedloop system is stable whédloating-point and fixedpointregulatorssynthesized from
simpler modelsre regulating the detailed plant madel

Section5 outlines rf-systan response measurements with beam and how to fine tune the lingdambtodelto

match machine or Vlasov response function$asovcomputed response functions are introduced as a surrogate for
machine measurementhensuch measurements are not aafalié. Although they are a poor substitute for machine
measurements, they still provide a model of the rf system and beam with considerable dynamical detail. As such,
they provide an independeand detaileghlant model with which to synthesize and te§G regulators.The use of

such models is discussed in SBd. prior to the discussion of the measurement of machine response functions using
controller hardware (ADCs and DACS) in Sé2

Sectins6.1, 6.2, 6.3 andapply the methoddescribed to this point to Vlasov models of NSILSCLS, and NSLS

VUV rings. Sectiorb.4 regulategshe NSLSII model with a proportionaintegral controller for comparison.
Section6.5 discusses the problem of amplifier gain compression, how the plant model compensates for it (a gain
parameter), how gain compression iskdematic for direct rf feedback, and a digital solution to the last problem.
Section6.6 presents qualitative estimates of sensitivity of the cldsed system to variations of gains and phase
shifts within the plant model.

5.1 Vlasov-computed response functions

Vlasowcomputed response function providdetailed model of bunches coupled to a cavity (or cavities
surrogate for real machine measuremer@acha modelis availablethroughVlasov simulationg15], which
accommaatecoupling ofhigherorderradial andmultipole modes within the bundland potentialvell distortion)
Although far from a final testhis modelprovides atest of controllersynthesized from the model Bfgure?2 for
effeds beyondhe model oFigure2: Full model used for linearizationSuccess of such a test would be
encouragingandfailure would cast doubt on the entire enterpri®éorking through this test has been a useful
exercise for wrking through the details of matching the mod&Figure2 to the Vlasov model. This is not wasted
effort because the discrepancies found will speed maté¢tigge2 against the real machine behawdren
response measuremeai® available

The ideahereis to compute response functiooisthe Vlasov modelfrom the two rf inputs to the outputs that are to
be used by theQG regulator Theseresponse functions are used in two wa¥¥sFigure?2 is tuned to them, which
is then used to generate BQG regulatoy and2) they are accurately fit to rational functiofts use as a plant

model faithful to the Vlasoxxomputed behaviorThelatter fit is used to represent the rf gystin stability tess
where it is configured with feedback through gyathesized QG regulator(Sec.5.4).

TuningFigure2 to the Vlasov data was done bymputingFigure2’s linear model irMatlab’sfrd representation,
and minimizing a weighted square of the difference betwégure2's and the Vlasord model'sresponse



functions. The fit is not particularly sensitive to the details of thightimg. Parameters varied are the real and
imaginary parts of the rf feedback, almdAM gain parameterThe InAM gain parametesiccounts fothe degree of
amplifier saturation.The qain parameters also applied to the cavityoltage feedback path bagse it also is
subject to amplifier saturation. Lategig parameterfor all inputs and outputwill be needed with machine
measurements to absaibtails oftheinputandoutputhardware.

Results of théwo-input and fouroutputfits are given in te Figure11, which represents NSLB with four CESR
cavities INAM andInPM are the inputs in columny¥] andVQoutputs areepresented in thieft pair of columns
andthet ande outputs ar@epresented in theght pair of ®lumns For each output there are separate magnitude
and phase plots. Blue traces are the VIdsbv model, and green traces are the tuRigaire?2.
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Figure 11: Response functions of the model dfigure 2 (blue) fit to Vlasov-calculated response functions
(green). Input ports are | nAMand | nPM(left and right columns, respectively, of each pair of columns), and
outputs shown here areVl , VQ, t au, and eps as labeled on the lé¢fedge of each pair of columns.

The resulting fits are remarkably good, although there are discrepancies. FinsBNhéo VI response shows a
discrepancy at low frequency, and at small amplitude. | do not regard this as significant. Second, there are
differences is CB line shapes. But, sitice 380kHz offset is so large whetle cavity impedance is greatly
reducedthis also is not likely to be a problem. Thiethd most significantly, the higlhequency behavior of the

INAM to VQresponse oFigure?2 is qualitatively wrong. A possible explanation is that there is an unaccounted for
phase error that rotates th#®M to VQresponse or thePM to VI response into thlnAM to VQresponse, which

is small at high frequenciesBeyond that | don’t have an explanation that behaviarDespite these problems, the
overall quality of the fits confirms thahe model ofFigure2 is capable of describing the behavidmy Vlasov
modelof short bunches ia singlecavity rf systemwith considerable precision

Given that the amplifier in the model Bfgure2 has a time step ane LQG sample timehe ability to
accommodate amplifier delayas addedo the Vlasov code. The fitare sensitive to suatetails

To generate the accurate analytic fits of asovresponse functions for use afaithful Vlasowsimulated
surrogate for machine datdlasovresponsdunctionsare processed to generaé¢ionatfunction fitsas desdbed in
an earlier reporf16], with the exception that Matl&bdiscretetimeinfreqz  is used instead afs continuougime



infreqs . This is done because Matlab cannot simulatéréin modelconsisting of numerical response da&ix
statevariables peresponse functiofdenominatopolynomials of degree six) are needednodel the data
accurately to the degree shown in the following pldtgyure 12 shows eight (unlabeled) response functions for two
inputs and four outputs€d) with their fits (blue), magnitude (left) and phase (rigsttpwing the quality of the fits.
The fits areexactnearlyto the widths of the tracewith some distortion ahe CB lines That fits of stretched
bunches required so many more state Wdem (1215 for each fit) is no doubt due to mode coupling within the
bunches.
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Figure 12: Rational-function fitsto Vlasowcalculatedresponse functiondor use as a linear model of the
beam/cavity systenfaithful to the calculated response functions

Simulations showed that this Vlasderived risystem model closed by th€G regulatoris stable.The model

does not have the amplifier noise inputshef model ofFigure2, so direct comparisons of @& suppression with
Figure?2 closed by itd QG regulatorare not possible. In any case, the success of this test is encouraging in that an
economical QG regulatorderived from a different motléFigure?2) is stable witlthe modelof Figure12.

One may synthesize a controller directly from the fitted Vlasov model and be sure that thdabdpssgstem is

stable no doubtwith good noise suppression. The problem with this iddéhat each of the eight response functions
is fitted independently Consequentlyeach has an independent set of state variablgdtingin amuchmore
computationally intensive controller. But even so, a controller constructed in this manneillnbaypsactical and
used if needed.

5.2 Machine response measurements

It is suggested that machinesponse measurements are best done witbatimeDSP hardware that drQG
regulatorwould otherwise besing The first reason is for this suggestion is thabrs introduced by an alternate
measurement apparatesg.,network analyzer, detector calibrations, cable lengths, etc., are avdidestond

reason is that the measurements can be integration with system operations so they providing more fréquent, a
timely data better and more simply able to track drifts. While performing the response measum@ments,
proportionalintegral (P1) controllewith low gain and long time constargan be regulating the system.

A problem with this idea is thdéedbackinterferes with the measurement. The solution to this problem is to not
only record the signals of interest, i.e., cavity field, beam signalveltde the system is being exciteuljt also ©
record the twalrive signalgthe ‘Source’ signals ifrigure 13) output by thenumerically controlled oscillator

(NCO). With that information, the NC@o-source respondenctionscan be inverted and the true | and Q response
functions between the source and the outputsrmdbedded fronthe network. With careful work aridw loop gain,

the responses will disappear into the noise only at inconsequentially low and high frequmrtside of

frequencies at which the fits figure?2 are required
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Figure 13: PI controller with network analyzer in a digital rf controller . The rf system (the amplifier, cavity,
and beam) closes the loop between the rf output at the left, and the cavity field at the right. Swtints are not
shown in thisfigure. During normal operation, a digital regulator provides signals to the terminals of the
direct digital synthesizer (DDS), and takes as inputs a subset of tisevenl and Q signals from the cavity,
forward, reverse, and beam. The 1/Q blocks represert I/Q demodulation logic, and not NCO Fourier analysis
of Figure 14.

In what follows, all quantities are in the frequency domain, i.e., eagttl and Q signa andt is Fourier analyzed
to a complexvaluedfunction of NCO moduktionfrequencyby an analyzer such as is showrFigure14.
Furthermorelet S=[SI SQ ]" andV = [VI V Q" betwo-componentomplexvalued vectoffunctions ofNCO
frequency Thevalueof these quantities depends ttve modulaibn M; applied by the NCO tdhe | and Q
summation junctions, perhaps excitation applied to one and then the otheS drikl¥/, M; is a twecomponent
complexvalued vectoifunction of NCO frequencyepresenting modulation type The rf system’s respse
functionG is a tweby-two responseamatrix mapping rf modulatiolsto V. We have

V=G-S
S=PI-V+M,
=PI -GS+ M,
Consequently,
M= (1-PI-G)-S

Becauses and other signals have two componeMsgan take on two linearly independent valireseparate
measurements. In other words, with the two measurements taken asha =i, ; M,] can be regarded as a
square matrix In a similar fashion, the vectogV, a, andb can be regarded as square fsetwo matrices, a
column for each measement with an independent modulation tyfdéiis means that, with squakéknown and
squareSandV measuredwe havemeasured:

G=S'-Vv
Finally, the response functions to the other quantities are known.
G=S' a
G=S"b
G=S'r

Note thatr and consequenti§, are onlycolumnvectors. Not shown is an equation foandG,. There are a total
of 14 response functions to be measured this way, neglecting beam eAefggquencies at which the PI controller
has negligible response, we lesy = M.

Returning to hardware, Fourier analysis can be done on éligure14 shows a straightforward Fourianalyzer
arrangement. After the NCO frequency is set and it is exciting the system, some deadgtmeitslet transients



to damp outthen clear the registers and integrate for an integer number of NCO periods. Buffer or upload the | and
Q outputs. Frequencies scanned should start from 30 Hz or so, and go to 1(@gkidz if measuring the coupled

bunch lines) The | and Q outputs probably need quite a lot of bits (>16) to cover the range of signal intensities.

The accumulator needs rather more bits on the-kgsificant end as described in Sécl on numerical precision

of fixed-point sums. To estimate this humber, assume that the incoming 1/Q data rate is 40 MHz/4 and the

integration time is 10 ms, although this will vary with frequency. Timerl®, and bits~ Ing(\/27en002) ~8
to 10.

Figure 14: Fourier analyzer for a real-valued signal

This procedure for the dembelding of openloop response functions from the clodedp measurements may not
be necessary. Recall that there is a need for feedback to suppress the reactive Robinsoy, iastihiliarticular

it mustbe activewhen performing response measuremedis.alternate route for configuring the LQG regulator is
to run it in parallel with the PI controller. In this configuratitime Pl regulator is part of then@ironment in wheh

the LQG regulator is embedded. This means theisuremesstof the linear properties of the systénatthe LQG
regulatorcontrols includes the running PI controlkemnd uses the raw response measurementsSiiorigure13to
the various outputs (cavity field, beam, etc.) as the raw LTI object (the plant) from which the LQG regulator is
synthesized. Thus the @enbedding procedurautlined earlier in this sectiors not used and thieear response
measurements are substayi simplified. Furthermore, the integration of the LQG regulator with the larger rf
controller is simplified in the sense that the PI controller is never frozen while the LQG regulator is active, but
instead only the LQG regulator is stoppesket andstartedasneeded While a different model is needed to
represent the plant in this configuration, it is not necessarily more complicated or more computationally intensive.
Further study is needed to explore this configuration.

5.3 Model flow from measurements to logic

As has been discussed in some detaib, linearizedrf-systemmodelshave been constructed from either machine
response measurements or Vlasalculated response functigreneis asimplified model(the rigid-bunch model

of Figure2) usedfor the synthesis of the LQG regulator, and another that accurately reproduces measured or
Vlasowcomputed response functi®and is later used for testing with the synthesized regul&igure15

illustrates thelow of thesemodels through the Matlab codadsome of theeode blocks used to synthesize or
simulatethesemodels. The filiNSLSIl.m oversees the process tbe NSLS |l modeland is the lowedevel

code containing machirgpecific data Matlab code that synthesizes the LQG regulator is machine independent.
The dashed arrowf Figure15indicates validation, that is, that acceptable performance of the diosed
simulationof the faithful model with the synthesidé QG regulatosuggests that the regulator may be useable in
logic.
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Figure 15. Model flow diagram showing model stages and their names in parentheses.

Objects andunctionsin this diagranare:

Time .m —is generated bilathemaica code and contains Matlab code defining fitte objectVlasovLTI
housing impulse response functiondasovL Tl is transiently used bgonstructLTIModel.m to build
the statespace modeVlasovFit  accurately reproducing the measured or Vlasaleulatedresponse
functions.

ConstructLTIModel.m — constructan accurate linegrlant model from theneasured or Vlasesimulated
frequencydomain response functions.
LTIDifference.m — fits parameters of the ndimear rigidbunch model of. TI5.mdl to the measd or

Vlasowcomputed response functions.

LTICovR .m — Constructs the floatingoint regulatokreg and the fixeepoint regulatokregQ . It also
assigneslata to the workspace for use lbyIBenchmark.mdl

LTIBenchmark .m — performs closedbop simulation®f various plant models with various regulators (Sec.
5.4).

NSLSIl.m —NSLSIl-specificcode handling the model flow &igure15. This is themachinespecific
Matlab code layer

LQG.v - Prototype Veitog code defining the regulatam logic. Params.vh is an include fileritten by
LTICovR defining some parameters used by LQG.v and ldeeel Verilog blocks. More details are
contained in Sed..2

5.4 Simulink model for open- and closed-loop simulations

In Secs3, 4, and5.1, a number of linear and nonlinear models of the rf system and fleatifixedpoint LQG
regulators were develoge Thepurposeof the regulators is to stably control and suppress noise ifi-Bystem
models With these risystem and regulator models in handp@ansy whichto test for stability and measure
performance of the closddop systems is neededhere are two regulators to be testedefloating-point and the
fixed-point regulators.There are three relatedsfstem models: the ndmear model ofFigure2: Full model used



for linearization.and its linearization fit to the Vlasesalculated linear respon$enctions, andhe linear model
accurately reproducintpe Vlasov and/or measured response functiofbe Simulink modelLTIBenchmark
part of which isshown inFigure 16, was developed fahis purpose The base notinear moetl of LTI5 | its
linearization, floating and fixedpoint regulators generated b¥ICovR , and a PI regulator are employed in
LTIBenchmark . LTIBenchmark has a number of essential functions.

» First, itis needed to compare the clodedp beam noise predid by the Matlab functionovar with those
computed fromime-domain simulations of linear and ndinear rf models and floatirgoint and fixedpoint
controllers. Thus it serves as a check of the synthesized regulators against liesaomplant modeland
against linear plant models derived from machine response measuremenfs)Saw/or synthetic (Vlasov
calculated, Se.1) response functions.

e Second, iis a tool used to hand tune the bit widths of quantixdgl, C, andD matrix elementsf the
controller This is done by observing (or beam phase and energy noise levefshe closedoop model
consisting of a fixegpoint controller and a plant modeind comparing ito either the theoretical calculated by
covar , or the tolerance provided I6y.

e Third, it is used ta@wompute statvariable rms intensities. Some have rather small intensities in the floating
point controllers, which end up always being zero in the fipeiht controllers. These state variabteed not
be part of the controllerThe intensities also provide a meao estimate the range over which to represent the
state variables (number of bits)

»{ L 1
rms —jm
Itiz Y
M >lant diags1 regulated
K vstron (inear) InAR, INPh,
AN, P tau, eps 4
noise kreg (v v
Floating-point  readout
LQG controller noise
»{ L 1
rms
U Y Y
Flant diags? regulated
{ncrlinear) InAmd, INP,
tau, eps 1
kreg [y v

Floating-point  readout
LQG zontroller!  noise 2

Figure 16: Part of the Simulink model LTI Benchmar k for simulation of regulators with linear and non-
linear plant models. Shown are linear ad non-linear plant models regulated by a floatingpoint LQG
regulator. Not shown are fixedpoint regulators controlling plant models and an unregulated plant. The
‘diags’ blocks compute standard deviations, which are displayed in the righinost blocks, ad route data to
the workspace for later processing.

The nonlinear plant model is equivalent kd’'15 .

Models and parameters are taken from a number of variables in the base work space:

e ltix —the linearized model of the plant calculated GYyCovR .

» kreg -the floatingpoint controller calculated byTICovR .

» kregQ —the fixedpoint controller calculated byTICovR .

* PlantOutputsUsed  —routes the correct plant outputs to the input of the controller
» taueps -—indices selecting ande from the plant output



» Thet ande outputs of the various simulations are routed to the work space and plotted in the frequency domain.
6 Performance estimates

6.1 NSLS-Il model

When run orbincomb , the NSLSII ring parameters returned a number of stable controllers. The one repdesente

in tables 2 to 4 anBigure17 uses VI, VQ, and ta(beam phasegs inputs. Amplifier noise is 1% amplitude a8d
RMS phase in 1&Hz bandwidth. Identical noise tolerances and readout noise were speétiiaglparameters are
in NSLSRing.m andNSLSIl .m and the model to linearize i§'15.mdl

Table 1
Plant Controller o, (deg)| o, (x107%)
Linear None 1.37 0.33

Linear Floding point | 0.017 0.015

Linear Fixed point 0.019 0.015

Non-linear | Floating point| 0.024 0.016

Non-linear | Fixed point 0.025 0.016

Table 2
Matrix | Resolution (bits)
A 12
B 9
C 6
Table 3
I/0 Resolutia (bits)
ADC | 11
DAC | 7
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Figure 17: Spectrum of linearized model open loop (blue), coupled to a floatingoint LQG regulator (green),
and coupled to a fixedpoint controller (red); non-linear model coupled to the fixedpoint controller (aqua).

The exact shape of the frequersiymain response of the optop rf model is dependent upon the rf feedback,
whose primary purpose is to suppress the reactive Robinson instability. Thelolmsedsponse functions should
not be sensively dependent on the feedback, although | haven’t experimented with this yet.

6.2 Canadian Light Source model
When run orbincomb , the CLS rind 17] parameters returned only a couple of stable controllers. The only useful
one is represented in the table®Y and Fig. 19 and uses VI, VQ, and tau as inputs. Amplifier noise is the same as

in the other models: 1% amplitude aBd RMS phase in 1&Hz bandwidth. Identical noise tolerances and readout
noise were specified. Ring parametars inCLCRing.m andCLS.m, and the model to linearize @.S1.mdl .

Table 4
Plant Controller o, (deg) | o, (x10%)
Linear None 0.389 0.069

Linear Floating point |0.023 0.0070

Linear Fixed point 0.024 0.0072

Non-linear |Floating point |0.024 0.0071

Non-linear |Fixed point 0.026 0.0076

Table5
Matrix | Resolution (bits)
A 9
B 6
C 5
Table 6

| 110 | Resolution (bits)|




ADC | 11
DAC | 9

ragnitude

Frequency (kHz)

Figure 18 Spectrum of linearized model open loop (blue), coupled to a floatingoint LQG regulator (green),
and coupled to a fixedpoint controller (red); non-linear model coupled to the fixedpoint controller (aqua).

6.3 NSLS VUV model

When run orbincomb , the NSLS VUV ring parameters returned a number of stable controllers. The one
represented in the following tables 8 to 10 and Fig. 20 uses VI, VQ, and tau as inputs. Amplifier noise is the same

as in the other modeld% amplitude and8’ phase RMS in 10 kHz bandwidth. Identical noise tolerances and
readout noise were specified. Ring parameters are inRibym andVUV.m and the model to linearize is

VUVL.mdI .
Table 7
Plant Controller o, (deg)| o, (x107%)
Linear None 0.53 0.065
Linear Floating point| 0.0085 0.0023
Linear Fixed point 0.0091 0.0030
Non-linear | Floating point| 0.0091 0.0023
Non-linear | Fixed point 0.0096 0.0028

Table 8

Matrix | Resolution (bits
A 12

B 8
C 6
Table 9

I/0 Resolution (bits)
ADC | 11

DAC | 7
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Figure 19: Spectrum of linearized model open loop (blue), coupteto a floating-point LQG regulator (green),
and coupled to a fixedpoint controller (red); and non-linear model coupled to the fixedpoint controller

(aqua).

6.4 Proportional-integral regulator in an NSLS-1l model

It was suggested that | compare the perforreanfLQG regulatos with a conventional proportionaitegral (P1)
regulator Here | describe the results for the case of the NibSh&chine.

LLRF systems typically sense the level and phase (or | and Q) of the cavity field and apply correctiagaghzck
input of the rf amplifier (level and phase or | and Q). This feedback affects the stability of the beam, particularly if
the feedback has significant bandwidth compared to the synchrotron frequency. One cannot do this by trying to
suppress nois@ithe cavity to a high degree because this also suppresses perturbations of the cavity field by the
beam. This reduces the impedance of the cavity, and consequently reduces damping of Robinson modes.
Furthermore, rf feedback employed in the NSL&0dd to optimally damp Robinson modes and suppress the
reactive Robinson instability would be spoiled by additional feedback, perhaps increasing amplifier noise
transmitted to the beam. So one cannot, in a simple way, usgdiiglfieedback from the cavitjefd.

An approach to this problem | looked at is to consider what a single (scalar) loop could do to noise transmission to
the beam. Because the cavity field is complex valued, as is the amplifier input, reference phasers on the complex
plane much be ches to get a real signal from the cavity field, and for a real input to modulate the rf. | intuitively
chose to use AM modulation of the rf (parallel to the amplifier forwaade-output phasea0), and to sense the

phaser component of the cavity fieldthé phase af0 times the cavity’s (loaded) impedance, the cavity phase at
which low-frequency perturbations af appear. This choice is stable and provides significant suppression of noise
transmission to the beam in the NSU®nodel. The results arghown in Table 11 and Fig. 21 showing noise in the
unregulated model and the regulated model with PILl&D@ regulatos. As with all the models of this report, the

specified amplifier noise i§° phase, and uncorrelated 1% amplitudgu€sian noise in 2kRHz bandwidth.

Table 10

Regulator o, (deg)| o, (><10_3)

None 1.4 0.33
FP LQG | 0.017 0.015
Pl 0.40 0.15
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Figure 20: Noisesuppression of the NSLSI model with a proportional -integral regulator.

There is considerable suppression of the noise spectrum at lower frequencies. But, in terms of total RMS noise, the
suppression is only by a factor of three for beam phase noisbyaméhctor of two for energy over the unregulated
model. Much of the remaining noise is due to a broad line at the synchrotron frequency. In this test, the gain has
been pushed upwards to near instability. The peak at about 100 kHz is where phaséecarges small and

oscillations occur at slightly higher gain. The synchrotron line at 4 kHz may be stable or more stable in this case.
The emergence of that line is due to teductionof the impedance of the cavity by the feedbarkich lessens

danping of theRobinson modéy the cavity 14].

This particular feedback scheme did not, unfortunately, work at all with the CLS and VUV models. Only feedback
with unity-gain bandwidth small compared to the synchrotron fraquevas stable, and then with negligible rms

noise suppression. Feedback with any bandwidth that results in stable beam is sensitive to rf feedback used and the
resulting properties of the Robinson modes. | don’t know in any detail why the-N®$i&lel behaves so

differently with PI feedback. But with so little bandwidth in the CLS and VUV models, the feedback is only able to
correct for drifts. This is the behavior | had come to know working with the VUV ring. Any bandwidth at all,
particularly withthe phase loop, resulted in instability.

Another approach that is useful for suppressing amplifier noise is applying feedback around the amplifier to regulate
gain and/or phase shift. Although amplifier noise is dominated by phase noise, the presenteahglitude

noise means that the use of a phase loop leaves residual noise even with higogghgas. How much depends

on the AM vs PM noise characteristics of the amplifier. Aside from this limitation, a phase loop is likely to be
insensitive taamplifier saturation and could handle considerable bandwidth, and so could effectively suppress noise
and be relatively easy to implement. Numerical experiments with a phase loop were successful at reducing the noise
transmitted to the beam by nearly atta of 100 or so, a factor similar to the performance ol Q6 regulator

Because of the asymmetry of the AM vs PM noise in the model, the beam noise was sensitive to misalignments of
the phase loop compared to the phase noise (a misalignment louitiérilystron model). That factor of 100

requires a trim to correct for that misalignment.

An amplitude loop around the amplifier is sensitive to saturation, as any control scheme is.

All of these noisesuppression factors are limited by the delayhe loop. With lower delay, gains and bandwidths
can be pushed higher and better noise suppression results.

6.5 Amplifier saturation and gain compression

Amplifier saturation is an inevitablgroblem Althougha closedoop modeldid not show special settisiity to
amplifier saturatior{Sec.6.6), it doesstill present a problem for operation of thesgulatos deep in saturation, at
the very least because the amplifier can simply run out of power. Even if the amplifierodloes aut of power,
the nonlinearity of the amplifier output means that the system response fundtifinand performancedeviates
optimal A digitalregulatorcan correct for this problem, either by a Aorear output that inverts the amplifier



noninearity, or simply by a gain parameter that varies in a calibrated way with the operating point. Periodic
amplifier response measurements as outlined in®s2m effect implementhe latter.

But thismethod incompletelgompensates for amplifier nonlinearity whexs in PERI [ 18],there is direct rf
feedback in parallel with the digiteégulator This isbecause the digital gain parameter is not in the padireft

rf feedback But the NSLSI rf system uses direcf feedback at low gain as a means to stabilize the reactive
Robinson instabilityunlike PERII, where it is used at high gain snippress acceleratimgode impedance. That it
is at low gain suggests that gain compression will not affect NSLS in thevgayneBut even if it does, rf feedback
at low gain can easily be absorbed into the function of the digitgilator perhaps into the Regulator
programmed to use the sameasuredjain parameteas the LQG regulator

Measurement of the gaparameterequires a much simplified response measurement compared to the measurement
outlined in Sec5.2. Referring taFigure14, it requires measuring the ratio of theghase component of the

amplifier fooward amplitudeal to the irnphase component of the source, cadllit at a singleelatively low

frequencyand in a few tens of millisecondd his can be done closed loop withthe correctionfor the presence of

the loop discussed in the section. Himplicity and speed of the measurement suggests that it could be run
transparently during top off, although it likely is not needed every tap off

6.6 Sensitivity to variation of operating point and rf misalignments
and mismatches

The behavior of a real ahine will inevitably differ from the behavior of the linearized model upon whichQ@
regulatoris built. There can be a variety of reasons for this, including phaser misalignments, drifting components,
and a discrepant operating point.

To get a genetadea of the sensitivity of the closédop rf system to these sorts of changes, | introduced
gain/attenuation and phase shifts in the amplifier chain at the points shown in Fig. 8, points 1 and 2 being phase
shifts, and points 3 and 4 being gain/attefmnat Point 1 differs from point 2 in that it is outside the feedback loop,

a relatively minor difference given that the rf feedback gain is only a few decibels. But they both have the effect of
rotating the incoming signal phaser relative to the nominal.

A gain perturbation at point 3 would be expected to require compensation freegtiator but would not have a
significant impact on the amplifier operating point if the DC ofmp gain is large. In contrast, point 4 is
downstream of the amplifieand would have a stronger impact on its operating point.

RF feedbadk

fram to
controllef * Am 'gl " cavity
1 2 3 4

Figure 21: Four points in the amplifier drive chain at which perturbations are introduced.

| found that both of the phase perturbations could be over moretfd’ without instability and/or particle loss
at both points 1 and 2, and with both floatipgint and fixedpointregulatos. Point 1 may have been slightly less
sensitive that point 2 as would be expected with feedback, although the testiglas ro

| also found that the loop is less sensitive to perturbations at point 3 than point 4 as expected. At point three,
particles were not lost for gain perturbations in the 0.7 to 3 range, roughly. At point 4, the corresponding range is
0.93 to 4. Sohe loop is quite sensitive to amplifier saturation, as expected. The amplifier model exhibits strong
saturation and levalependent phase shifts. The operating point was intentionally chosen to be into saturation but
with some output power to spare befdr peaks and falls off at higher drive.

There is variation of beam noise with the perturbations, with the noise becoming quite large prior to beam loss.
Particles were lost perhaps due to the initial mismatch of the incoming phaser.

So this closedoop nodel shows significant margin for perturbation of the plant, which is why early on | was
encouraged by these results. Although these results are not very quantitative, it is my hope that model tuning, which



is discussed in Seb, can match the machine to the model within a range within whictethdatorcan work well
and have margin for drift.

7  Digital processor architecture

7.1 Computation for the time step

At this point we must contend with tlaenount and complexity of compuiah that must be completed each 088
time step(for the NSLSII model). Referring again t&igure3, the processing involved is the four gain blogks,

C, andD representing matrix multipliesnd accumulatesThe fable shavs the number of multiplies in each block in
theNSLSHI LQG regulatorarchetype.

Table 11
.| Sub .
Matrix blocks Multiplies
2X2x5
A 1x1x4 24
B 14x3 | 42
C 2x14 | 28
Total 94

The number of multiplies suggests that individual miikiis in hardware need to handle multiple multiplies. This
may appear problematic, but there are 33 clock cycles availathiiem which to get the job donerigure12 shows
the sequete of computationsfdeq. 1.

Please be awarof the ambiguity of the andy symbolism of the plant inputs and outputs th&regulatorinputs
and outpus. There is a similar ambiguity gflantA-, B-, C-, andD-matrix symbols andhe dentical symbols of the
regulatorstatespace modelFurthemore, while there are noise inputgo the plantthese inputs are not preseit
theregulator Remember that in this sectiare are talking about thegulatorexclusivelyand references to thg

B, C, andD matrices and inputs and outputandy refer to the regulator only

Figure22 andFigure23 show how the matrix computation can be sequenced in a serialize architecture where each
row of B andD, and column ofA andC is computed imasingle clok cycle. All the state variables of, appear

serially each LQ@&ample cycle. The matrix produCk,., is also computed serially, column by column. The state
variables are remembered from the previous cycle.
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Figure 22: Sequencing ofregulator inputs, outputs, and computations. In this diagram, no pipeline delays
are assumed.

Figure23 differs fromFigure22 in that the C matrix product proceeds with the newly compytadas they emerge

from theA andB computation. This permits that matrix product to be computed one cycle sooner, and added to the
Du, product as soon as it is completed, which is generally sooner because the number of inputs is less than the
number of sta variables. ThuBigure23 has lower latency thafigure22.
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Figure 23: Sequencing ofregulator inputs, outputs, and computationsin an architecture with lower latency.
This configuration takes advantage of the fact that the serialize® computation completes more quickly each
cycle when there are fewer inputs than state variables. In this diagram, no pipeline delays are assumed.

Figure24 shows apossiblecoarse architectur®r theA, B, C, andD computations.In the B matrix block, the
number of multipliers is the same as the number of columBs dhree are shown. Coefficients are fed to the
multipliers a row at a time while the inputs reméiked. The outputs are fed to the sum (at the kernel summation
point) at the same rate they are needed. SBthleck is a simple matrix multiply of an ordinary dense matrix.

Figure 24: Regulator matrix computations.

The A-matrix block is different in that it has been arrangethatA is uniformly block diagonal with a block size of

two. As was discussed earlier, this is because 2x2 blocks correspond to the space spanned by the eigenvectors of
conjugate eigenvalue painsjth the exception of real eigenvalues. For th@sdeigenvalues, LTICovR arranged

that that they be paired, with the result that those 2x2 blocks are diagonal. (This works as long as the number of

state variables is evenlhe z ™% are register stacks with depity2 clocked at half the data rate@hereN, is the
number of state variableMatrix coefficients arded a two-element row at a timt the multipliersat the full data
rate

The Gmatrix block is also an ordinary desm matrix multiply, this time in a multiplgccumulate configuration.

Two outputs are shown in tliegure24. Matrix coefficients are fed to the multipliers a column at a time, and the
outputs valid at the end of the accumulegele. Thez® registers are cleared at the beginning of the cychso
suggest two accumulator precision bits for this bj@skwas mentioned Bec.4.1.

The multipliers and register stacks have enable inputs for stgmoimputation when thegulatoris idle, and when
the computation is completed and it is waiting for new input samples. They also have reset inputs for use as
described irBec.7.3Error! Reference source not found.on higherlevel architecture.

Coefficients perhaps could be stored in small randaaess memory blocks. An alternative is registacks

This particular configuration requires seven multipliefhiese multipliers may be pipelined needednd registers
inserted as propagation delays warraRegarding processing delay from when an input becomes available to when



outputs become available, a quick estimate is two pipeline delays plus the number of state variables (in clock
cycles).

7.2 Prototype logic in Verilog

The architecture dfigure24 was developed ittarusVerilog [19] as a means to 1) test the concept and design of
Figure24 and 2)beginto flesh out the designwhile the coé verifiedFigure24 through simulations and it can

serve as a prototype upon which further development can be based, as it is it cannot run at the needed data rates. To
do so it needs pipeliningAs was mentioned earlier, it raalso beneshed with the larger logic in a real controller

that controls it and provides the matrix elemerftarthermore, a working system mag ofa multi-cavity type

discussed in Se@.3. Discussed in this section isenglecavity prototype only.

The codewill be described quickly given that it is a prototype and not working code. The basic organization of
elements of the logits shown inFigure25. The highest level elementi€QG.v, theLQG regulatoiitself. In its
mature formLQG.v might be instantiated as a unit in the larger cavity controller, i.e., in H. Ma’s contrgller [
Other éements of the diagram are parameterized models instantiated by eldngetsin the diagramThe files
ABlock.v , BBlock.v ,CBlock.v , andDBlock.v handle the computation of the matrix multiplies suggested
by their names. Coefficient and data bit widths, overflows, and accumulator precision bits are as specified by
parametes provided at build timeThese parameters are exported by the function LTICovR in Matlab at the time
theregulatoris synthesized there.

LQG.v

Bhlock.y ADlock.v CBlock.v DBlnck.v

ShiftReg. v SignedMultiply Accurnulate. v

Mult.v
Figure 25: Verilog filesand dependencies.

Mult.v  provides a multiplier of specifieahultiplicand and outputvidths. There is rounding of the least

significant bit of the product. Rounding is important for reasons given indSk@lthough it is more relevant after
a sum. ShiftReg.v  provides a shift registaf specified bit width and depth with synchronous shift, enable, and
clear. SignedMultiplyAcccumulate.v functions as its name suggests with specified operand bit widths,
output bit width, overflow bits, and accumulator precision bits.

The next three figus explicate the bit widthlocations of sign bits and binary points, etc., inAh8, andC logic,
beyond what is shown iRigure5. Figure26is for theA matrix productfigure27 for the B matrix product, and
Figure28 for theC matrix product. Given the structure of the computatioRigtire24, for example, that is both

an input and an output of tlematrix productsome of the parameters of the blocks are constrained by the other
blocks. The diagrams hint at these constraints.
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Figure 26: Coefficient and data bit widths, locations of sign bits (sb), binary points (bp), and accumulator
precision bits (Aapb) for the A-matrix multiply/accumulate.
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Figure 27: Coefficient and data bit widths, locations of sign bits (sb), binary points (bp), accumulator
precision bits (Bapb), and overflow bits for theB matrix multipl y/accumulate. Bbits isa B-matrix scaling
parameter specified byL Tl CovR.
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Figure 28: Coefficient and data bit widths, locations of sign bits (sb), binary points (bp),rad accumulator
precision bits (Capb) for the C matrix mult iply/accumulate. Cbits isa C-matrix scaling parameter specified
by LTI CovR.

Synthesis of aegulator(in Matlab, not logic synthesisyould ordinarily take place whehe controller measures

the rf system response functions duragalibrationtime allocated for the purposélhis might be once a daylhe

response functions are then uploaded to a supervisory computer responsible for controller synthesis by the software
in Matlab. At that time, parameters needed-R/G.v for logic synthesis of the spéic LQG regulatorare exported

to a Verilog include file to be imported bYQG.v. From here, one of two things can happen.

»  First, if bit counts within th&. QG regulatorchange from synthesis to synthesis, then the controller logic
mustberesynthesizedand botlregulatorlogic and coefficients must be downloaded to the rf contralier
calibration time

e Orif all the bit counts are stable from synthesis to synthesis, then the contgiteneednotbe
resynthesizedand coefficients only need be tdarly downloaded.The controller itself need be
downloaded much less frequen{bt a boot time)

Either way, theegulatorsynthesis software in Matlab and the prototype logic together outline how machine
measurements by the controlleQG regulatorsynthesis, and logic synthesis can be melded into a system that
smoothly and periodically generategjulatos and updates coefficients.

7.3 Integration with a larger rf controller

Before going into the more detailed look at the DSP architecture, first weatdukwv arLQG regulatomight fit

into a working machine. Suchregulatorby its nature is tuned to control at a specific operating point of the

machine and may not be tolerant of large swings in the operating point or other changes in the machirieis beh

In fact these changes are inevitably present. Making the controller function properly without beam, during injection,
or during top off may not be possible without a tiadependent controller built on a detailed and accurate model of

the dynamic®f the machine. This problem is likely tractable, but unnecessary, given that the performance gain
provided by thd QG regulatoris needed only at full current and full energy. Here we benefit from the simplicity of
top-off operation. We only need a t&independentegulatortuned for only one machine state.



But going this route means that th@G regulatoris not available at other times and an alternate one must be

available. Most machines have a simple analog or digital proporiotegjral (Pl)regulatorfixing rf cavity field

intensity and phase. It may or may not be very effective at suppressing beam noise near and above the synchrotron
frequency. For our purposes, it need only be stable at low and high field intensities and at all beam Ciineze

must also be a smooth crossover between thedrilatorand theLQG regulator

So | suggest we consider the higherel architecture offigure29.

RF sys RF sys
PI Ei— ) PI
| PLbasod controller | { | PLbased controller
LQG
E clr

Figure 29: PI regulator (left) and LQG regulator in parallel with PI regulator (right). The PI block is a
proportional -integral regulator and the LQG block is a linearquadratic-Gaussianregulator.

Both the Plregulatorand theLQG regulatothave enable inputs that control whether they do angthDnly one is
active at a time, as is indicated by the complementary states of the enable inputs indiege20. So when

one is active, the output of the other is frozen, the latter providing a fixed offset abouttiaichmer operates
(Figure30). When the cavity is idling, being ramped to power, during injection, or during top off, tieg®atoris
active. The Ptegulatorhas no use during this time for a control offset providechky. QG regulator so the state
variables of the latter are reset at some time during this time. After injection and transients die away, the PI
regulatoris disenabled and tHe€QG regulatoris enabled, taking control. The Rgulatoris not reset and stead
defines the nominal operating point for th@G regulatoifor the duration. Thé€QG regulatomeed not provide a

lot of effort to the plant, but instead only provide small nalsgen excursions about the operating point, excursions
that are presuably effective at suppressing beam noise. Periodically during top off, control is switched to the PI
regulator theLQG regulatoreset, and control switched back to tH@G regulator The reset ensures that the Pl
regulatorfollows drifts in the operatig point instead of theQG regulatomaking up the difference. The system
would be configured to automatically trigger switchover upon detection of a range of faults, such as a large
excursion, a beam dump, etc.
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Figure 30: Pl and LQG regulator ranges and operating point.

Using this scheme, the output range of ti¥G regulatomeed not be as large as ther@julatots range. The
range needed is poorly defined at this point since it depends on the magnitude of drift the mesdizies. But it
may be quite small if top off occurs every couple of minutes since the-di@n range is rather small. The utility
of moderating the Kalman'’s output range is in the economy of the output signal processing (block C).

The Pl/Kalman pable logic signal may be tied into the user gate signal to ensure thap@eegulatoris active
when sensitive users are taking data.



The Plregulatorwould be on the same chip as tH@G regulator but it need not consume significant chip resources
due to its simplicity and low update rate.

This architecture may make possible testing of unsta®ié regulatos by switching over to theQG regulatorfor
very short intervals. Intervals may be chosen that are sufficiently short that beam will nstt éeelo if the system
is unstable.

Should there be drift in amplifier saturation resulting in excessive changes in amplifier (incremental) gain, this
variation could be compensated for during operation witHnAd1 gain parameter placed at the outputh&ltQG
regulator Amplifier saturation could be periodically measured at the end of top off but befdr®eegulatoris
gated on. The measurement is done with a sifigluency response measurement using a subset of the logic of
Figure13. This is done by measuring the magnitude of the-#aM\M matrix element of T [(1—G) for theSto-a

(the forward wave output by the amplifier) response function. This measurement need only be done at one
frequency chosen widbelow the synchrotron frequency. Since there is significant post processing, it must be done
on a supervisory computer and would perhaps be done less frequently than every top off.

It should be noted that tHeAM gainparameter compensates tieguldor feedback path, but not the rf feedback

path. For this reason it is not clear how well it compensates for amplifier saturation. An attenuator in that path
linked to thelnAM gainparameter may be needed. Depending on how deeply into saturationplifeeestoperate,
saturation may complicate the operation of rf feedback due to the asymmetry in amplitude and phase it introduces
[20]. Itis true that direct rf feedback can be absorbed intoatelator in which case the problem of compensating
for amplifier saturation can be handle completely byItieM gain parameter.

7.4 Distributed architecture for multiple cavities

Before considering the larger problem of scaling the regulator formalism developed in this report to Hoavitulti
control problem wth scaled degrees of freedom, it is appropriate to point out how to apply acangleLQG

regulator to a mulicavity system. By this is meant simply taking feedback from the coherent sum of the cavities
and applying the regulator’s output to all gmplifiers. This does not control all degrees of freedom in the systems
in thatadditional loops areaeded to ensure that the systems keep the cavities’ fields close to the same value. This
is relatively simpleio dowith feedback using coherent detectiof coherent differences of the cavity fields ZIA
couplers are used to form the coherent sum, then the coherent differences are available freemthesemrs.
Thesedifferenceloops, if tuned properly, have minimal coupling to the beam. @anéidthis way, the rf systems
appearo the LQG regulator as a singtavity rf system.

We proceed now to the larger probleiith multiple cavities, théull statespace model has state variables for

each amplifier and cavity. The cavity part of thedmlis thus duplicated, although they are distinct because they

have different characteristics. As a consequence, the number of state variables is roughly multiplied by the number
of cavities The computational load, being matrix multiplies, scales, @strecases, with the square of this

multiplicity, particularlytheB, C, andD computations But due to the blockliagonal structure of the kernel, the

largest, theA portion, scales only linearly. It is the subject of this section to work out an atahiteleat distributes

the computational load among the planh€ls regulatos in the rf shtions controlling the cavitiesnd witha

systemlevel controllerin a naturabhnd manageablway.

First note that because the actuators controlled by @@ reguldor reside in the rf stations (the | and Q

modulatorsall rows of the matrice€ andD are specific to individual cavities. Therefore, computation of rows of
these matrices is naturally assigned to their caeityilator. There are reftover rows Similarly, rf cavity | and Q

field and klystron forward and reverse signiadésxd Q componentsriginate from the cavity and cavity controllers,

so the columns of the matrBthat are associated with individual cavities are also naturally assigned toatvigjr
controllers. Unlike theC andD matrices, there are columns of enatrix for beam signals (energy and/or phase).

So the computation of each of these three matrix multifie€, andD, with the exception of columns &f

associated with beadegrees of freedom, is divided uniformly among the cavity DS®P® columns of th&

matrix associated with beam signals, in contrast, do not naturally belong to a cavity controller. They are assigned to
asystemlevel LQG regulatomunit.

As was discusskearlier, theA block, through kernel transformationis reduced to blockliagonal form with at
most tweby-two blocks. This means that thematrix multiply scalesonly linearly with the number of cavities plus
the fixed number of beam degrees of freed Furthermore, due to the kernel transformations, there are no blocks



of A that are associated with any one of the rf cavities. So one cannot identify a part of the kernel that naturally
resides with any one rf cavity. Nevertheledistributingthe A computation among the cavity controllers can still be
done while adding only modest additional computational load to those contrnliéiseeping the cavity controllers
identical in form and functianFirst, Hocks of theA-matrix multiply correspondingh numberto the beam degrees

of freedom are assigned to the system controll®econd, the rest of theblocks are divided uniformly among the
cavity LQG regulatos. In this way, theA-computational load is naturally distributediformly among the avity
controllers, which have identical logic implemented in them (but different coefficients), and the system controller,
which has only a modest computational workload in addition to its sijstlbution function.

While the computational intensityf the A block in eaclregulatoris not greater than in a singbavity LQG
regulator(less actually), remember that the number of columr@ afidD and the number of rows &have been
scaled, aside from the beam degrees of freedom, by the numbertafscagio the workload of tH& C, andD
blocks in each of the cavitggulatos still scales with the number of cavities. tBeB-, C-, andD-matrix
computation®f the cavityregulatos requireparallelization by the number of cavities beyond thdgigtire24.
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Figure 31 Architecture for a multi-cavity distributed LQG regulator computation.

Figure31 shows the architecture just outline@emember that th& andB blocks d the system LQG @egulator
differ in form from those in the cavityegulatos, while theA, B, C, andD blocks in the cavityegulatos are
identical in form, but differ in coefficients.

The timing sequence is roughly showrHigure32 and builds on the singleavity cycle ofFigure22. At the time
indicated byu, 1, the inputs become available from the ADiGshe cavity controllers The state variables of the
previous cycle had been serially trarited so that the first componentsxf; arrive at the cavity LQG regulators at
the same time the inputs.; became available there. TAeandB computations then proceed serially and the results
are transmitted serially to LQG 0 as they are completezithose results arrive, the nayare serially computed,
latched at LQG 0, and serially transmitted to the cavity LQG regulators f@ #melD computations. Those
computations proceed serially as the components afrive. At the end of the cy&lthe new outputg, are

available at the cavity controllers. Thus #lignaltransit times are integrated into the computation cycle in a simple
way with minimal delay.
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Figure 32 Sequencingof computations occurring in themulti -cavity architecture of Figure 31.

A veryrough estimate of the round trifelay is 3@ ns given the relative locations of tiwo rf straights Data
transmissiornis configuredas a strearthat is initiatedonce per cycle in each directioft must notbe bufferedor

else a great deal of latency is addéthe data transmitted must be padded with zeros between data words, because
thex data rate is less than the capacityhef type of linklikely to be ugd. Configured as a stream, the minimum
delay introduced by the data link is the physical transit time; even the setup times can be anticipated.

Theu data links that feed thg computations in the cavity LQG regulators function in principle similarlihex

data links. But only a smaller quantity of data must be transmitted to the cavity regulators in time for the start of the
D computation. Because tiecomputation is shorter and need only be finished by the tim€ tmenputation

finishes, theu data links do not add additional delay to yh@omputation.

Pipeline delays are not shownhkigure32. They add delay between tBA computations and thé computation,
and extend the lengths of the B and A computations, i€ tcomputations. Depending on the details of the serial
link interfaces, minimal buffering at the inputs and outputs of the serial links may be required.

Althoughthe regulator logic is ndteshed out beyondhis point there are a number of pointslite made to make
these ideamore understandable. Sixtebit sampés,four rf stationsu signalsVl andVQfrom each rf statioma
single beam sampléau presumably)and an LQG data rate of 2 MHze assumefbr the serialdatarate estimates
below.

e The kernel summation poinsubblocks of theA computation corresponding multiplicity to the beam degrees
of freedom, and¢olumns ofB (theB block in LQG 0)corresponding to the beafenergy and/or phase) inputs
reside on the system LQGregulatoras fiown This for logical consistency and to ensure that the ca\@
regulatos are identical in form and function.

e The singlecavity regulatorwhose construction is describedSecs3 and4 is intended to run at the rf
controller'sclockrate of ~40 MHz, with a data rate of2 MHz. With thatclock rate there are some spare
clock cycles at the end of the LQG cycle. The medtvity LQG regulatos’ clock rateis assumedtthe same
~40 MHz andhat that computation must be paralleled, with the multiplicity being the number of cavities, and
with a similar number of spare clock cycles at the end of the LQG cycle. Clock cycles for any additional
pipdining will eat into that spare

» The multiplicity of cavities has an impact on the number of extra accumulator bits and stages of pipelining
needed in the various computations through the number of terms in the matrix mykliplieEscribed in Sec.
4.1

» Delay due to thghysicalseparation between controllers on different rf straights has an impact on the rf model
from which theregulatos aresynthesized. It also has an impact on the timing of the logic, as does the
transmission delays on tlieandx data links. Additional delayaffectthe model if additional sample times are
added to theegulatorinputs of the rf modeSec.3.2).

» The singlecavity regulatorrequires seven multipliers of a few hundred logic elemerttls Eaimplement. With
four cavities and, say, 500 logic elements per multiplier, each da@i€ regulatomeeds something like
((3+2)*4+2)500 = 1,000 logic elements for multipliers. Further parallelization increases this number.

* All of the LQG regulabrs have, or work with, embedded network analyzers in logic in the manner described in
Sec.5.2 Measurement of offliagonal blocks of the system response function using these network analyzers



requires synchronized data acgjtion among theontrollers Fitting the multicavity version othe model of
Figure?2 to these response data (Sg&cmightpresenta significant computationahallenge

» Distribution of signals byhe system controller is presumably by higfeed serial links, perhaps through fiber
optics, although twisted pair may be adequate within a straight section.

* Theu (inputs) bus must be combined from signals from the beam and cavity controllers estdlistéd to the
cavity controllers. From each cavityQG regulatoy theu data rate is 2 real samples per-0.s sample
interval ~ 60 Mbpsaverage rate

e All u(input) samples are needed for rematrix computation, whickcales with the number of cavities. Thus
a data rate of nine samples per LQG sample interval ~ 0.3 &gpagedata rate is needed to catheu
samples to each cavityQG regulator

e Thex (statevariable) signals are distributed to the caWtyG regulatos for theC-matrix computation and
demand the greatest datarrying capacity of the serial links. The data rate is ~50 state variar&Qs
sample time ~ 1.5 Gbsrerage raten each link.

» TheA+B link from each cavity controller tthe system controllezarries roughly 10 real samples each LQG
sample time, or ~0.3 Gbawveragealata rate.

» These dataate and computation estimates hagsumed that cavity | and Q signald @andVvQ only from
each cavity are used for feedback. The use of additional signals, such as the forward (al and aQ) and reflected
(bl and bQ) waves, for feedback

8 Notes and conclusions

Models of singlecavity rigid-bunch rf systems were developed to address the tight-ne&a requirements of
timing and FTIR experiments at NSUE Numerical simulations dfQG regulatos inthesemodelswere found to
realize a great deal of gain and bandwidth and show a corresgathetjree of noise suppression of amplifier noise
compared to simpler proportiongltegralregulatos. If this performance can be realized in an rf system, then that
machine can tolerate considerably morsy$tem noise than otherwise.

Although theseregulatos are fine tuned to the characteristics of a particular model,dbeyot show a prohibitive
amount of sensitivity to variation of the modéihis is encouraging and to a degree allays fears about the difficulty
of fabricating robustegulatos. But machine measurements are a necessityerifying by simulations that other
degrees of freedom of the machisech as higheorder bunch multipolesan be neglectedlo a degree, those
concerns are allayed by the successaf @G regulator syntheézed for aFigure2-modelfitted to Vlasov

calculated response functigm®ntrolling a statespace model faithfully fitted to the same Vlasov response
functions. Machine measurements are also needed to fine tumedbatorfor optimum performance and margin

of error.

RF-system andegulatormodels were developed for NSIE CLS, and NSLS’s VUV rings. Models of all of these
machines yielded apparently vialskgulatos and similar performance improvements. The VUV and @io8els
show better natural (opdoop) suppression of amplifier noise than does the N8Ingodel.

It was discussed in SeB.5that the synthesis of floatifgpint regulators in Se@ often resilts in unstable

regulators which often have higher gains and highkrsedloop performance It was suggested thstable

regulators be chosen becauseafplicationausing unstable ones. But with digital logic, it is feasible to test for
closedloop stability by switching the regulator on and then off after a short time, and Fourier analyzing signals in
the loop. This is performed in the manner of coufdadch mode growthate measurements in burbi+bunch
feedback system®]], where growth of amitability is detected and cut off before significant amplitudes are
reached. Where robust highgain regulators can be testits waysuccessfully, improved performance may

result. Alternatively, the choice of moderatain unstable regulators usirfgr example, transmission line signals

al ,aQ, bl , and/orbQ, may not result in improved performance, but mayvidemore robustegulatorsby other
measuresThis is a direction that can be explored with digital controllers.

Methods for establishing relitions of the coefficients and data paths of fepint regulatos were developed. It
turns out that thesegulatos require relatively modest resolutions, easing#iseurce requirements of a digital
implementation.



These results are very encouragin thattheyprovide evidenc¢hatviableregulatos for rf systems in topff

operation can be constructed ahdttheir performance is exceptional suppressing amplifier noiséA number of
tools for construction and testing of thesgulatos arealsodemonstrated. Fixepointregulatos built from these
tools seento work well and areealizable in modest FPGAg$:urther work is needed to better characterize amplifier
noise, measure machine characteristictuding response functionandto fill in many details of how these

regulatos would be meshed with the larger rf control systpanrticularly with multiple cavities
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