- Problem 4-6 Montgomery 5th edition
- Randomized Block Design
- An engineer working on an aluminum smelter wants to investigate the effect of 4 different "ratio control algorithms" has on the cell voltage. This is the effect of the way the alumina is added to the cell (Vessel holding aluminum melt) to maintain the proper ratio to the other ingredients has on cell voltage (which controls the cell or melt temperature). He knows that the time the measurement is made may have an influence on the results. Set up and run analysis and draw conclusions.

- Problem 4-6 Montgomery 5th edition
- Randomized Block Design
 Design Expert
- Setup data as>>>>
- Block on observation time
- Questions
- A. Does ratio control algorithm effect average cell voltage?
- B. Does ratio control algorithm effect the std dev ("pot noise") cell voltage?
- C. Conduct residual analysis.
- D. Which ratio control algorithm reduces both average cell voltage and pot noise?

Std	Run	Block	Factor 1 A:Algorithm	Response 1 Average	Response 2 StDev
7	1	Block 1	2	4.85	0.04
13	2	Block 1	3	4.83	0.09
1	3	Block 1	1	4.93	0.05
19	4	Block 1	4	4.89	0.03
20	5	Block 2	4	4.77	0.04
2	6	Block 2	1	4.86	0.04
14	7	Block 2	3	4.88	0.13
8	8	Block 2	2	4.91	0.02
9	9	Block 3	2	4.79	0.03
3	10	Block 3	1	4.75	0.05
21	11	Block 3	4	4.94	0.05
15	12	Block 3	3	4.9	0.11
22	13	Block 4	4	4.86	0.05
16	14	Block 4	3	4.75	0.15
10	15	Block 4	2	4.85	0.05
4	16	Block 4	1	4.95	0.06
23	17	Block 5	4	4.79	0.03
5	18	Block 5	1	4.79	0.03
11	19	Block 5	2	4.75	0.03
17	20	Block 5	3	4.82	0.08
12	21	Block 6	2	4.85	0.02
18	22	Block 6	3	4.9	0.12
6	23	Block 6	1	4.88	0.05
24	24	Block 6	4	4,76	0.02

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert
- <u>Average Cell voltage ANOVA Table</u> CONCLUSIONS??

Response: Average

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

		Sum of		Mean	F	
Source		Squares	DF	Square	Value	Prob > F
Block		0.017	5	3.487E-003		
Model		2.746E-003	3	9.153E-004	0.19	0.9014
	А	2.7 4 6E-003	3	9.153 <i>E</i> -004	0.19	0.9014
Residual		0.072	15	4.812E-003		
Cor Total		0.092	23			
Std. Dev.		0.069		R-Squared	0.0366	
Mean		4.84		Adj R-Squared	-0.1560	
C.V.		1.43		Pred R-Squared	-1.4662	
PRESS		0.18		Adeq Precision	2.688	

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert
- <u>Average Cell voltage residuals</u>

Residual

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert
- <u>Plot of Average Cell voltage Vs Alumina Ratio control algorithm</u>

A: Algorithm

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert Note transform to natural log as per page 111 (stabilizes distribution of standard deviations)
- <u>Standard Deviation Cell voltage ANOVA Table</u> CONCLUSIONS??

Response:	StDev	Transform:	Natural log	Constant:	0.000
ANOVA f	or Selected Fact				
Analysis of v	ariance table [Pa	uares]			
	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Block	0.94	5	0.19		
Model	6.17	3	2.06	33.26	< 0.0001
,	4 6.17	3	2.06	33.26	< 0.0001
Residual	0.93	15	0.062		
Cor Total	8.04	23			
Std. Dev.	0.25		R-Squared	0.8693	
Mean	-3.04		Adj R-Squared		
C.V.	-8.18		Pred R-Squared	0.6654	
PRESS	2.37		Adeq Precision	12.446	

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert

Normal % Probability

Standard Deviation Cell voltage residuals

Normal Plot of Residuals

Residual

- Problem 4-6 Montgomery 5th edition Solution
- Randomized Block Design Design Expert
- <u>Plot of Standard Deviation Cell voltage Vs Alumina Ratio control algorithm</u>

A: Algorithm

- Problem 4-6 Montgomery 5th edition Solution Randomized Block Design Design Expert
- The objective of this evaluation was to minimize both Average Cell voltage and the Standard Deviation of Cell voltage, Which Alumina Ratio control algorithm achieves this?

- Problem 4-15 Montgomery 5th edition
- Blocking using Latin square method

. . .

• Engineer wants to investigate the effect of 4 assembly methods have on the assembly time for a color television subsystem. He knows operators and assembly order (fatigue) are nuisance factors. Set up and run analysis and draw conclusions

Order of			Row	Latin Letter		
Assembly	1	2	3	4	Totals y _{.j.}	Totals y _{t.}
1	C = 10	D = 14	A = 7	B = 8	39	A 30
2	B = 7	C = 18	D = 11	A = 8	44	B 37
3	A = 5	B = 10	C = 11	D = 9	35	C 53
4	D = 10	A = 10	B = 12	C = 14	46	D 44
Col. Totals <i>y_{.k}</i>	32	52	41	39	164	

- Problem 4-15 Montgomery 5th edition Solution
- Blocking using Latin square method

$$\begin{split} \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} y_{ijk}^{2} &= (10)^{2} + (14)^{2} + \dots + (12)^{2} + (14)^{2} = 1834 \\ y_{..} &= \sum_{i=1}^{4} \sum_{j=1}^{4} y_{ijk} = (10) + (14) + \dots + (12) + (14) = 164 \\ SST &= \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{4} y_{ijk}^{2} - \frac{(y_{..})^{2}}{N} = 1843 - \frac{(164)^{2}}{16} = 153 \\ SS_{Method} &= \sum_{i=1}^{4} \frac{y_{i.}^{2}}{4} - \frac{(y_{..})^{2}}{N} = \frac{(30)^{2}}{4} + \frac{(37)^{2}}{4} + \frac{(53)^{2}}{4} + \frac{(44)^{2}}{4} - \frac{(164)^{2}}{16} = 72.5 \\ SS_{Order} &= \sum_{j=1}^{4} \frac{y_{j.}^{2}}{4} - \frac{(y_{..})^{2}}{N} = \frac{(39)^{2}}{4} + \frac{(44)^{2}}{4} + \frac{(35)^{2}}{4} + \frac{(46)^{2}}{4} - \frac{(164)^{2}}{16} = 18.5 \\ SS_{Operator} &= \sum_{j=1}^{4} \frac{y_{.k}^{2}}{4} - \frac{(y_{..})^{2}}{N} = \frac{(32)^{2}}{4} + \frac{(52)^{2}}{4} + \frac{(41)^{2}}{4} + \frac{(39)^{2}}{4} - \frac{(164)^{2}}{16} = 51.5 \\ SSE &= SST - SS_{Method} - SS_{Order} - SS_{Operator} = 153 - 72.5 - 185 - 51.5 = 10.5 \end{split}$$

- Problem 4-15 Montgomery 5th edition solution
- Blocking using Latin square method

Source	df	SS	MS	F
Method	3	72.5	24.17	13.81
Order	3	18.5	6.17	3.53
Operator	3	51.5	17.17	9.81
Error	6	10.5	1.75	
Total	15	153.0		

• ANOVA TABLE problem 4-15 Solution

Using the 5% significance level the critical *F*-value is $F_{0.05,3,6} = 4.76$. Therefore, the null hypothesis of equal treatment (Method) means is rejected.

Also it was worth blocking on Operator but probably not for Order since the F-value for Order is below 4.76.

- Problem 4-15 Montgomery 5th edition solution
- Blocking using Latin square method in Design Expert Set up:

Std	Run	Block	Factor 1 A:row Block	Factor 2 B:Column block	Factor 3 C:ASSEMBLY METHOD	Response 1 Assembly Time Hours
1	1	Block 1	Order 1	Operator 1	с	10
2	2	Block 1	Order 2	Operator 1	в	7
3	3	Block 1	Order 3	Operator 1	А	5
4	4	Block 1	Order 4	Operator 1	D	10
5	5	Block 1	Order 1	Operator 2	D	14
6	6	Block 1	Order 2	Operator 2	с	18
7	7	Block 1	Order 3	Operator 2	в	10
8	8	Block 1	Order 4	Operator 2	А	10
9	9	Block 1	Order 1	Operator 3	А	7
10	10	Block 1	Order 2	Operator 3	D	11
11	11	Block 1	Order 3	Operator 3	с	11
12	12	Block 1	Order 4	Operator 3	в	12
13	13	Block 1	Order 1	Operator 4	в	8
14	14	Block 1	Order 2	Operator 4	А	8
15	15	Block 1	Order 3	Operator 4	D	9
16	16	Block 1	Order 4	Operator 4	с	14

- Problem 4-15 Montgomery 5th edition solution
- Blocking using Latin square method in Design Expert:
- Click on Effects and Change A and B to blocks

Irans	sform .	Effects	ANOVA Dia	ynostics M Gr	lodel aphs			
	Term	DF	Sum of Squares	Mean Square	F Valu	ie	Prob ≻ F	% Contribution
F	Intercept	<u> </u>						
Ь	А	3	18.50	6.17				12.09
Б	в	3	51.50	17.17				33.66
M	С	3	72.50	24.17				47.39
\sim	AB	6	10.50	1.75				6.86
\sim	AC		Aliased					
\sim	BC		Aliased					
\sim	ABC		Aliased					
	Residual	s 0	0.000					

- Problem 4-15 Montgomery 5th edition solution
- Blocking using Latin square method in Design Expert:
- Click on ANOVA Method of assembly has a significant effect on time of assembly! |Response: Assembly Time

ANOVA for Selected Factorial Model

Block term includes A, B

Analysis of variance table [Partial sum of squares]

		Sum of		Mean	F	
Source		Squares	DF	Square	Value	Prob > F
Block		70.00	6	11.67		
Model		72.50	3	24.17	13.81	0.0042
	С	72.50	3	24.17	13.81	0.0042
Residual		10.50	6	1.75		
Cor Total		153.00	15			
Std. Dev.		1.32	R-S	Squared	0.8735	
Mean		10.25	Adj	R-Squared	0.8102	
C.V.		12.91	Pre	d R-Squared	0.1004	
PRESS		74.67	Ade	eq Precision	12.430	

- Problem 4-15 Montgomery 5th edition solution
- Blocking using Latin square method in Design Expert: Graphic have many options. Can look at operators and Assembly Orders separately!

