- Example worked out Replicated Full Factorial Design
- 2³ Pilot Plant : Response: % Chemical Yield:
- If there are *a* levels of Factor A, *b* levels of Factor B, and *c* levels of Factor C a *full factorial* design is one in all abc combinations are tested. When factors are arranged in a factorial design, they are often called *crossed*.

• 2³ Pilot Plant : Response: % Chemical Yield Design and data:

		FACT	ORS		Lo(-1)	Hi(+1)		
•	\mathbf{A}	Temper			160°	180° C		
•	В	Concen	tration		10%	40%		
_	\boldsymbol{C}	Catalyst			A	В		
	C	Test#	Temp	Conc	Catalyst	Yield		
			\mathbf{x}_1	х2	X3	y _{i1}	y _{i2}	$\overline{\mathbf{y}}$
		1	-1	-1	-1	59	61	60
		2	± 1	-1	-1	74	70	72
		3	-1	+1	-1	50	58	54
		4	± 1	+1	-1	69	67	68
		5	-1	-1	+1	50	54	52
		6	± 1	-1	+1	81	85	83
		7	-1	+1	+1	46	44	45
		8	+1	+1	+1	79	81	80

Standard Order

- 1st variable column (-1,+1,-1...)
 - Alternates every 20 value
- 2nd variable column (-1,-1,+,+,-,-,+,+)

Alternates every 21 values

- 3rd variable column (-,-,-,+,+,+,+,-,-,-,-,+,+,+,+,...)
 Alternates every 2² values
- kth variable alternates every 2 k-1 values

- 2³ Pilot Plant : Response: % Chemical Yield
- Cubic display: Replicated Experiment

Definition of a factor effect: The change in the mean response when the factor is changed from low to high.

- 2³ Pilot Plant : Response: % Chemical Yield
- The <u>effect</u> of a factor is defined to be the change in the response Y for a change in the level of that factor. This is called a <u>main effect</u>, because it refers to the primary factors of interest in the experiment.
- Calculation of Effects:

Avg. of all responses at high level of x1

$$=\frac{74+70+69+67+81+85+79+81}{8}=75.75$$

Avg. of all responses at low level for x₁

$$=\frac{59+61+50+58+50+54+46+44}{8}=52.75$$

 $E_1 = 75.75 - 52.75 = 23.0$ Geometrical interpret

$$E_1 = \frac{-59 - 61 + 74 + 70 - 50... + 85 - 46 - 44 + 79 + 81}{\text{Number of "+"Signs} = 8}$$

$$E_1 = 23.0$$

$$E_1 = \frac{-60 + 72 - 54 + 68 - 52 + 83 - 45 + 80}{4} = 23.0$$

y's (We will work with these)

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically *A Main effect*

Effect of A: Average of all the High A's minus the average of all the Low A's

Average

Effect A	Low A	High A
' [54	68
· [60	72
· [52	83
' 	45	80
23	52.75	75.75

low A

high A

Effect of A =
$$E_A = (68+72+83+80)/4 - (54+60+52+45)/4 = 23$$

• 2³ Pilot Plant : Response: % Chemical Yield

• Interpretation of effects: A Main effect

Effect of A: Average of all the High A's minus the average of all

the Low A's

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically **B Main effect**

Effect of B: Average of all the High B's minus the average of all the Low B's

High B	Low B	Effect B
68	72	
54	60	
45	52	
80	83	
61.75	66.75	-5

Average

low B

Effect of B =
$$E_B = (68+54+45+80)/4 - (72+60+52+83)/4 = -5$$

• 2³ Pilot Plant : Response: % Chemical Yield

• Interpretation of effects: **B Main effect**

Effect of B: Average of all the High B's minus the average

of all the Low B's

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically *C Main effect*

Effect of C: Average of all the High C's minus the average of all the Low C's

Effect C	Low C	High C
	54	45
	60	52
	68	83
	72	80
1.5	63.5	65

Effect of C = $E_c = (52+54+45+83)/4 - (72+60+54+68)/4 = 1.5$

• 2³ Pilot Plant : Response: % Chemical Yield

• Interpretation of effects: *C Main effect*

Effect of C: Average of all the High C's minus the average of

all the Low C's

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically *AB Interaction*

Effect of AB: Average of all the positive A*B's plus the average of all the negative A*B's

AB	+	AB	-	Effect AB
	60	+ -	72	
+ +	68	- +	54	
	52	+ -	83	
+ +	80	- +	45	
Average	65		63.5	1.5

Effect of AB = $E_{AB} = (60+68+52+80)/4 - (72+54+83+45)/4 = 1.5$

• 2³ Pilot Plant : Response: % Chemical Yield

• Interpretation of effects: <u>AB Interaction effect</u>

Effect of AB: Average of all the positive A*B's plus the average of all the negative A*B's

				VIELD B	YIELD B		
	YIELD B	YIELD B		HIGH 1	HIGH 2		
	LOW 1 (C	LOW 2 (C		(C	(C	AVG	AB
FACTOR AB	LOW)	HIGH)	AVG Low B	LOW)	HIGH)	High B	AVERAGE
AB LOW	60	52	56	54	45	49.5	63.5
AB HIGH	72	83	77.5	68	80	74	65
				EFFECT		1.5	

X₃ Catalyst

50, 54

B

• 2³ Pilot Plant : Response: % Chemical Yield

• Interpretation of effects: <u>AB Interaction effect</u>

Effect of AB: Average of all the positive A*B's plus the average of all the negative A*B's

69.6

50, 54

В

 X_3

Catalyst

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically *AC Interaction*

54 68 83 + C 72 - A +

Effect of AC: Average of all the positive A*C's plus the average of all the negative A*C's

AC	+	AC	-	Effect AC
	60	+ -	72	
++	80	- +	45	
	54	+ -	68	
++	83	- +	52	
Average	69.25		59.25	10

Effect of AC =
$$E_{AC} = (60+80+54+83)/4 - (72+45+68+52)/4 = 10$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Interpretation of effects: <u>AC Interaction effect</u>

 Effect of AC: Average of all the positive A*C's plus the average of all the negative A*C's

				EFFECT		10	
AC HIGH	72	68	70	83	80	81.5	69.25
AC LOW	60	54	57	52	45	48.5	59.25
FACTOR AC	LOW)	HIGH)	AVG Low C	LOW)	HIGH)	High C	AVERAGE
	LOW 1 (B	LOW 2 (B		1 (B	2 (B	AVG	AC
	YIELD C	YIELD C		C HIGH	C HIGH		
				YIELD	YIELD		

- 2³ Pilot Plant : Response: % Chemical Yield
- Interpretation of effects: <u>AC Interaction effect</u>

 Effect of AC: Average of all the positive A*C's plus the average of all the negative A*C's

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically **BC Interaction**

Effect of BC: Average of all the positive B*C's plus the average of all the negative B*C's

ВС	+	ВС	-	Effect BC
	60	+ -	54	
++	45	- +	52	
	72	+ -	68	
++	80	- +	83	
Average	64.25		64.25	0

Effect of BC =
$$E_{BC} = (60+45+72+80)/4 - (54+52+68+83)/4 = 0$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Interpretation of effects: **BC Interaction effect**

Effect of BC: Average of all the positive B*C's plus the average of all the negative B*C's

				YIELD	YIELD		
	YIELD C	YIELD C		C HIGH	C HIGH		
	LOW 1 (A	LOW 2 (A		1 (A	2 (A	AVG	AC
FACTOR BC	LOW)	HIGH)	AVG Low C	LOW)	HIGH)	High C	AVERAGE
BC LOW	60	72	66	52	83	67.5	64.25
BC HIGH	54	68	61	45	80	62.5	64.25
				EFFECT		0	

Catalyst

50, 54

B

- 2³ Pilot Plant : Response: % Chemical Yield
- Interpretation of effects: **BC Interaction effect**

Effect of BC: Average of all the positive B*C's plus the average of all the negative B*C's

Catalyst

50, 54

B

- 2³ Pilot Plant : Response: % Chemical Yield
- Calculation of Effects: Graphically *ABC Interaction*

Effect of ABC: Average of all the positive A*B*C's plus the average of all the negative A*B*C's

ABC	+	ABC	-	Effect ABC
+	72		60	
-+-	54	++ -	68	
+++	80	-++	45	
+	52	+-+	83	
Average	64.5		64	0.5

Effect of ABC =
$$E_{ABC} = (72+54+80+52)/4 - (60+68+45+83)/4 = 0.5$$

Summary: Effects in The 2³ Factorial Design Geometrical Presentation

Figure 6-5 Geometric presentation of contrasts corresponding to the main effects and interactions in the 2^3 design.

$$A = \overline{y}_{A^{+}} - \overline{y}_{A^{-}}$$

$$B = \overline{y}_{B^{+}} - \overline{y}_{B^{-}}$$

$$C = \overline{y}_{C^{+}} - \overline{y}_{C^{-}}$$
etc, etc, ...

Thank you for Computers!!

Analysis instantly One just needs to know how to input correctly and interrupt results

- 2³ Pilot Plant : Response: % Chemical Yield
- Summary of Effects: So Which ones are important??
- I.e Distinguishable from random Noise??

Effect E _x	Value
Α	23
В	-5
С	1.5
AB	1.5
AC	10
ВС	0
ABC	0.5

- 2³ Pilot Plant : Response: % Chemical Yield
- Summary of Effects: So Which ones are important??
- Experiment was replicated so calculate Sample polled variance as:

Test	y _{i1}	y _{i2}	y	S_y^2
1	59	61	60	2
2	74	70	72	8
3	50	58	54	32
4	69	67	68	2
5	50	54	52	8
6	81	85	83	8
7	46	44	45	2
8	79	81	80	2

.et's assume σ_y^2 is constant for all the tests.

Calculate pooled sample variance estimate of σ_y^2

$$S_P^2 = \frac{\Sigma s_P^2}{8} = \frac{2+8+32+2+8+8+2+2}{8} = 8$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Summary of Effects: So Which ones are important??
- Look at *Confidence intervals* (If 0 is in interval then effect is not significant.)

•
$$H_o: \mu_{E1} = \mu_{E2} = \mu_{E3} = \dots = 0$$

Data	
72	60
54	68
80	45
52	83
Grand Mean:	64.25

$$s_{avg}^2 = \frac{S_p^2}{N} = \frac{8}{16} = 0.5$$

$$s_{avg} = 0.707$$

100(1 - α)% Confidence interval for average (95% C.I.) is

$$Avg \pm t_{v, 1 - \frac{\alpha}{2}} s_{avg} = 64.25 \pm t_{8, 0.975} s_{avg} = 64.25 \pm (2.306)(0.707)$$

Since 0 is not on C.I., reject H_0 that $\mu_{avg} = 0$

- 2³ Pilot Plant : Response: % Chemical Yield
- Summary of Effects: So Which ones are important??
- Look at Confidence intervals (If 0 is in interval then effect is not significant.)
- Calculate SE and a t value

For our example,

$$s_{eff}^2 = \frac{4}{N} s_p^2 = \frac{4}{16}.8 = 2$$

Total number of trials = 16,

$$s_{eff} = 1.414$$

Sometimes called the Std. error of an effect $100(1-\alpha)$ % confidence interval

$$Avg \pm t_{v, 1-\frac{\alpha}{2}} s_{avg}$$

95% confidence interval is

$$E_i \pm (2.306) (1.414)$$

$$E_i \pm 3.26$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Summary of Effects: So Which ones are important??
- Look at Confidence intervals (If 0 is in interval then effect is not significant.)

95% confidence interval for each effect

$$E_1 = 23.00 \pm 3.26*$$
 $E_{12} = 1.50 \pm 3.26$ $E_{13} = 10.00 \pm 3.26*$ $E_{13} = 10.00 \pm 3.26*$ $E_{23} = 0 \pm 3.26$ $E_{123} = 0.5 \pm 3.26$

0 does not lie on C.I. for E₁, E₂, & E₁₃.

The calculated (sample) effects E₁, E₂, & E₁₃ have arisen from a normal distribution not centered at 0.

- 2³ Pilot Plant : Response: % Chemical Yield
- Mathematical model

For 2³ factorial design pilot plant example we tacitly assume that response can be characterized as:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + \varepsilon$$

We ran tests and fit this equation to the data:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \hat{b}_3 x_3 + \hat{b}_{12} x_1 x_2$$

$$+ \hat{b}_{13} x_1 x_3 + \hat{b}_{23} x_2 x_3 + \hat{b}_{123} x_1 x_2 x_3$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Fitted Mathematical model *Use only A, B, and AC effects in Model!*

We now know that only \hat{b}_0 , \hat{b}_1 , \hat{b}_2 & \hat{b}_{13} are important. The fitted model becomes:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \hat{b}_{13} x_1 x_3$$

$$\hat{y} = Avg + \left(\frac{E_1}{2}\right)x_1 + \left(\frac{E_2}{2}\right)x_2 + \left(\frac{E_{13}}{2}\right)x_1x_3$$

$$\hat{y} = 64.25 + 11.5 x_1 - 2.5 x_2 + 5x_1 x_3$$

- 2³ Pilot Plant : Response: % Chemical Yield
- Mathematical model

For each unique combination of x_1 , x_2 , & x_3 a predicted response may be calculated.

$$\hat{y} = 64.25 + 11.5 (-1) - 2.5 (-1) + 5(-1) (-1)$$

						_		Resid	luals
Test#	\mathbf{x}_1	x_2	x_3	y _{ij}		Уi	ŷ _i	$e_{ij} =$	у _{ij} - ŷ
1	-	-	-	59	61	60	60.25	-1.25	0.75
2	+	-	-	74	70	72	73.25	0.75	-3.25
3	-	+	-	50	58	54	55.25	-5.25	2.75
4	+	+	-	69	67	68	68.25	0.75	-1.25
5	-	-	+	50	54	52	50.25	-0.25	3.75
6	+	-	+	81	85	83	83.25	-2.25	1.75
7	-	+	+	46	44	45	45.25	0.75	-1.25
8	+	+	+	79	81	80	78.25	0.75	2.75

Factorial Example

• If there are a levels of Factor A, b levels of Factor B, and c levels of factor C a *Full Factorial* design is one in all abc combinations are tested.

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example

Std	Run	Block	Factor 1 A:Temprature C	Factor 2 B:Concentration %	Factor 3 C:Catalyst Type	Response 1 Yield %
1	16	Block 1	160.00	10.00	А	59
2	11	Block 1	160.00	10.00	А	61
3	2	Block 1	180.00	10.00	А	74
4	13	Block 1	180.00	10.00	А	70
5	9	Block 1	160.00	40.00	А	50
6	7	Block 1	160.00	40.00	А	58
7	4	Block 1	180.00	40.00	А	69
8	3	Block 1	180.00	40.00	А	67
9	5	Block 1	160.00	10.00	В	50
10	6	Block 1	160.00	10.00	В	54
11	12	Block 1	180.00	10.00	В	81
12	8	Block 1	180.00	10.00	В	85
13	10	Block 1	160.00	40.00	В	46
14	1	Block 1	160.00	40.00	В	44
15	14	Block 1	180.00	40.00	В	79
16	15	Block 1	180.00	40.00	В	81

• 2³ Pilot Plant: Response: % Chemical Yield Design Expert Example: **Half Normal Plot**: Tells you which factors have a significant effect on yield! *Only A, B, and*

AC are significant

Iransform Effects ANOVA Disgnostics Model Graphs

DESIGN-EXPERT Plot Yield

A: Temperature
B: Concentration
C: Catalyst

Full Fa

Brainerd

• 2³ Pilot Plant: Response: % Chemical Yield Design Expert Example: Normal Plot: Tells you which factors have a significant effect on yield! With impact direction. Only A, B, and

AC are significant

Transform Effects ANOVA Diagnostics Model Graphs

DESIGN-EXPERT Plot
Yield

A: Temperature B: Concentration

C: Catalyst

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: ANOVA Table *Only A, B, and AC are significant*

Response: Yield

Hierarchical Terms Added after Manual Regression

C

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

-	-	•	-		
	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	2625.00	4	656.25	97.55	< 0.0001
А	2116.00	1	2116.00	314.54	< 0.0001
В	100.00	1	100.00	14.86	0.0027
С	9.00	1	9.00	1.34	0.2719
AC	400.00	1	400.00	59.46	< 0.0001
Residual	74.00	11	6.73		
Lack of Fit	10.00	3	3.33	0.42	0.7459
Pure Error	64.00	8	8.00		
Cor Total	2699.00	15			
		_			
Std. Dev.	2.59	R-9	Squared	0.9726	
Mean	64.25	Ad	j R-Squared	0.9626	
C.V.	4.04	Pre	ed R-Squared	0.9420	•
PRESS	156.56	Ad	eq Precision	26.208	

2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: ANOVA Table Only A, B, and AC are significant

		_		
	Coefficient		Standard	95% CI
Factor	Estimate	DF	Error	Low
Intercept	64.25	1	0.65	62.82
A-Temperatur	e 11.50	1	0.65	10.07
B-Concentration	on -2.50	1	0.65	-3.93
C-Catalyst	0.75	1	0.65	-0.68
AC	5.00	1	0.65	3.57

Yield	=
+64.25	
+11.50	* A
-2.50	*B
+0.75	* C
+5.00	* A * C

So Why is C also used in the modeled equation if it is not significant?

95% CI Hiah

65.68

12.93

-1.07

2.18

6.43

VIF

1.00

1.00

1.00

1.00

There is a rule called the *hierarchy* principle!

See page 203

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: ANOVA Table *Models*

Final Equation in Terms of Actual Factors:

 Catalyst
 A

 Yield
 =

 -42.83333
 +0.65000
 * Temperature

 -0.16667
 * Concentration

 Catalyst
 B

 Yield
 =

 -211.33333
 +1.65000
 * Temperature

 -0.16667
 * Concentration

So Why are there 2 equations listed? Why isn't it just one equation with all terms?

See page 203

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: ANOVA Table *Only A, B, and AC are significant*

Std	Run	Block	Factor 1 A:Temperature C	Factor 2 B:Concentration %	Factor 3 C:Catalyst Type	Response 1 Yield %
14	1	Block 1	160.00	40.00	1.00	44
3	2	Block 1	180.00	10.00	0.00	74
8	3	Block 1	180.00	40.00	0.00	67
7	4	Block 1	180.00	40.00	0.00	69
9	5	Block 1	160.00	10.00	1.00	50
10	6	Block 1	160.00	10.00	1.00	54
6	7	Block 1	160.00	40.00	0.00	58
12	8	Block 1	180.00	10.00	1.00	85
5	9	Block 1	160.00	40.00	0.00	50
13	10	Block 1	160.00	40.00	1.00	46
2	11	Block 1	160.00	10.00	0.00	61
11	12	Block 1	180.00	10.00	1.00	81
4	13	Block 1	180.00	10.00	0.00	70
15	14	Block 1	180.00	40.00	1.00	79
16	15	Block 1	180.00	40.00	1.00	81
1	16	Block 1	160.00	10.00	0.00	59

Change all Factors to Quantitative

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: ANOVA Table *Use A, B, C, and AC in Model*

Final Equation in Terms of Coded Factors:

Final Equation in Terms of Actual Factors:

Change all Factors to Quantitative

Final Model:

$$\begin{aligned} \mathbf{y} &= b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 \\ &+ b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 \\ &+ b_{123} x_1 x_2 x_3 + \varepsilon \end{aligned}$$

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: Residuals Plot and run sequence: What do these plots tell us??

• 2³ Pilot Plant : Response: % Chemical Yield Design Expert Example: Model Graphics: Interaction Plot *Only A, B, C, and AC*

used

A: Temprature

Full Factorial Example Steve Brainerd

• 2³ Pilot Plant: Response: % Chemical Yield Design Expert Example: Model Graphics: Interaction Plot <u>Model Contour:</u> <u>Catalyst Average Only A, B, C, and AC used in Model</u>

• 2³ Pilot Plant: Response: % Chemical Yield Design Expert Example: Model Graphics: Interaction Plot <u>Model 3D Surface:</u> <u>Catalyst Average Only A, B, C, and AC used in Model</u>

Model terms: 3FI = factor interaction

• Only A, B, and AC are significant So Change Model>> Modified

Model terms: 3FI = factor interaction

• Only A, B, and AC are significant Change Model>>

Response: Yield

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	2616.00	3	872.00	126.07	< 0.0001
А	2116.00	1	2116.00	305.93	< 0.0001
В	100.00	1	100.00	14.46	0.0025
AC	400.00	1	400.00	57.83	< 0.0001
Residual	83.00	12	6.92		
Lack of Fit	19.00	4	4.75	0.59	0.6772
Pure Error	64.00	8	8.00		
Cor Total	2699.00	15			
Std. Dev.	2.63	R-S	R-Squared		
Mean	64.25	Adj	R-Squared	0.9616	
C.V.	4.09	Pre	Pred R-Squared)
PRESS	147.56	Ad	Adeq Precision		

Model terms: 3FI = factor interaction

• Only A, B, and AC used in Model

	Coefficient		Standard	95% CI	95% CI	
Factor	Estimate	DF	Error	Low	High	VIF
Intercept	64.25	1	0.66	62.82	65.68	
A-Temperature	11.50	1	0.66	10.07	12.93	1.00
B-Concentration	-2.50	1	0.66	-3.93	-1.07	1.00
AC	5.00	1	0.66	3.57	6.43	1.00

Final Equation in Terms of Coded Factors:

Yield =

+64.25

+11.50 * A

-2.50 *B

+5.00 *A*C

Final Equation in Terms of Actual Factors:

Only hierarchical models are scale independent and can be translated into actual units.

View: Modeled data on cube layout

• Model Cube: Only A, B, and AC used in Model

View:

•Model Contour: Catalyst Average Only A, B, and AC used in Model

A: Temperature

Full Factorial Example Steve Brainerd

View:

• Model 3D Surface Catalyst Average: Only A, B, and AC used in Model

Full Factorial Example Steve Brainerd